Physical and Mathematical Sciences | Conference paper | Published 2021-05-25

SPECIAL MEAN AND TOTAL CURVATURE OF A DUAL SURFACE IN ISOTROPIC SPACES

Collection: International Online Conference Algebraic and Geometric Methods of Analysis
Keywords: Isotropic space, mean curvature, total curvature, dual surface, special mean curvature, special total curvature

Abstract

In this paper, we study the properties of the total and mean curvatures of a surface and its dual image in an isotropic space. We prove the equality of the mean curvature and the second quadratic forms. The relation of the mean curvature of a surface to its dual surface is found. The superimposed space method is used to investigate the geometric characteristics of a surface relative to the normal and special normal.

References

  1. Artykbaev, A., & Sokolov, D. D. (1991). Geometry in the large in a flat space-time. Fan, Tashkent.
  2. Artikbayev, A., & Ismoilov, S. (2020). O secheniya ploskosti so izotropnogo prostranstva. Scientific Journal of Samarkand University, 5(123), 84-89.
  3. Artykbaev, A., & Sh, I. S. (2021). The dual surfaces of an isotropic space R 2 3. Matematika Instituti Byulleteni Bulletin of the Institute of Mathematics Бюллетень Института, 4(4), 2181-9483.
  4. Aydin M. E., Classification results on surfaces in the isotropic 3-space, AKU J. Sci. Eng., 16(2016), 239-246.
  5. Dede, C. Ekici, and W. Goemans Surfaces of Revolution with Vanishing Curvature in Galilean 3-Space, Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 2, pp. 141-152
  6. Ismoilov, S., & Sultonov, B. (2020). Cyclic surfaces in pseudo-euclidean space. International Journal of Statistics and Applied Mathematics, 3, 28-31.
  7. Исмоилов, Ш. Ш. (2021). СУЩЕСТВОВАНИЕ ПОВЕРХНОСТИ В ИЗОТРОПНОМ ПРОСТРАНСТВЕ С ЗАДАННОЙ СРЕДНЕЙ КРИВИЗНОЙ ДВОЙСТВЕННОГО ОБРАЗА. ББК 22.151 я431 К476, 1, 78.
  8. Исмоилов, Ш., Тиллаев, Д., & Юсупова, З. (2017). ГЕОМЕТРИЯ ПРЕОБРАЗОВАНИЙ, СОХРАНЯЮЩИХ ПЛОЩАДЬ ИЛИ ОБЪЕМ. CONTEMPORARY PROBLEMS IN MATHEMATICS AND PHYSICS, 175.
  9. Strubecker K., "Differentialgeometrie des isotropen Raumes II"// Math.Z.47(1942) 743-777
Loading...
0

Views

0

Reads

0

Comments

0

Reviews

0

Liked

0

Shared

0

Bibliography

0

Citations

Like and share on

Cite this publication

Copy text below and use in your article