Computer and Information Engineering | Conference paper | Published 2023

BRAILLE READING ASSISTANCE FOR THE VISUALLY IMPAIRED: AN ANALYSIS OF CURRENT TECHNICAL MANIPULATORS

Collection: TA’LIM SIFATINI OSHIRISHDA ZAMONAVIY INNOVATSION TEXNOLOGIYALAR; Yosh olimlar, doktorantlar va tadqiqotchilarning onlayn ilmiy forumi
Keywords: Braille, Technical manipulators, Refreshable Braille displays, Braille embossers, Visually impaired, Tactile writing system, Braille literacy.

Abstract

This article provides an overview of the current technical manipulators that are used for reading Braille data by visually impaired individuals. The article begins with a brief introduction to Braille, its importance, and the challenges faced by visually impaired individuals in reading Braille data. The article then presents an analysis of current technical manipulators, including their design, features, and capabilities [2].The article also discusses the limitations of these manipulators and areas for future research and development. The article concludes with a list of references and keywords related to the topic

References

  1. Akhatov, A. R., and Ulugmurodov Sh AB Qayumov ОA. "Working with robot simulation using ros and gazebo in inclusion learning." Фан, таълим ва ишлаб чикариш интсграциясида ракамли иктисодиёт истикболлари” республика илмий-техник анжуман, УзМУ Жиззах филиали (2021): 5-6.
  2. Akhatov, A., & Ulugmurodov, A. (2022). METHODS AND ALGORITHMS FOR SEPARATION OF TEXT WRITTEN IN BRAILLE INTO CLASSES USING NEURAL NETWORK TECHNOLOGIES. Eurasian Journal of Mathematical Theory and Computer Sciences, 2(11), 4-8.
  3. B. C. Ko, S. H. Kim, and J. Y. Nam, X-ray image classification using random forests with local wavelet-based CS-local binary patterns, Journal of Digital Imaging, vol. 24, no. 6, pp. 1141 1151, 2011.
  4. J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot, Hyperspectral image classification with rotation random forest via KPCA, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 4, pp. 1601 1609, 2017.
  5. M. Han, X. Zhu, and W. Yao, Remote sensing image classifi-cation based on neural network ensemble algorithm, Neuro-computing, vol. 78, no. 1, pp. 133138, 2012.
  6. Ахатов, А., Улугмуродов, Ш. А., & Таджиев, М. (2022). Аудио для фонетической сегментации и говори для говори. Zamonaviy innovatsion tadqiqotlarning dolzarb muammolari va rivojlanish tendensiyalari: yechimlar va istiqbollar, 1(1), 146-149.
  7. Akhatov, A. R., & Ulugmurodov, S. A. B. (2022, September). METHODS AND ALGORITHMS FOR DISTRIBUTION OF TEXT FROM IMAGES USING OPENCV2 MODULE. In International Scientific and Current Research Conferences (pp. 45-47).
  8. Тожиев, М., Улуғмуродов, Ш., & Ширинбоев, Р. (2022). Tasvirlar sifatiniyaxshilashning chiziqlikontrast usuli. Zamonaviy innovatsion tadqiqotlarning dolzarb muammolari va rivojlanish tendensiyalari: yechimlar va istiqbollar, 1(1), 215-217.
  9. Тожиев, М., Ширинбоев, Р., & Сулаймонова, М. (2022). Open cv kutubxonasida tasvirlarga rang modellari bilan ishlov berish. Zamonaviy innovatsion tadqiqotlarning dolzarb muammolari va rivojlanish tendensiyalari: yechimlar va istiqbollar, 1(1), 212-215.
  10. Kayumov, Oybek. "Scientific and theoretical basis of development and introduction of innovative methods in inclusive education." Scienceweb academic papers collection (2021).
  11. Jomurodov, D. M., Bekmirzaev, R. N., Igamkulov, Z. A., Afanasev, S. V., Dryablov, D. K., & Plexanov, E. B. (2012). The method of processing the raw data obtained by the scintillation spectrometer scan.
  12. Jomurodov, D. (2020). Avtomatik testlovchi tizimlar imkoniyatlaridan ta’lim jarayonida foydalanish. Архив Научных Публикаций JSPI.
  13. Pozilova, S. K., Mиpcaлиeвa, M. T., & Kayumov, O. A. (2022, April). Development of Professional Creativity of Professional Teachers in Professional Courses on The Basis of E-Pedagogy Principle. In Proceedings of the 8th International Conference on Education and Training Technologies (pp. 66-71).
  14. Akhatov, A., & Ulugmurodov, A. (2022). METHODS AND ALGORITHMS FOR SEPARATION OF TEXT WRITTEN IN BRAILLE INTO CLASSES USING NEURAL NETWORK TECHNOLOGIES. Eurasian Journal of Mathematical Theory and Computer Sciences, 2(11), 4-8.
  15. Kataoka, R., Iwamura, M., & Uchimura, Y. (2019). Large-scale Japanese braille dataset and its application to deep learning based braille recognition. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 2978-2986).
Loading...
0

Views

0

Reads

0

Comments

0

Reviews

0

Liked

0

Shared

0

Bibliography

0

Citations

Like and share on

Cite this publication

Copy text below and use in your article