Keywords:
Isotropic space, total curvature, mean curvature,
Abstract
An isotropic space is a self-dual semi-Euclidean space. Some
problems of geometry "in the large"in an isotropic space are equivalent.
References
ARTYKBAEV, A., & ISMOİLOV, S. (2022). Special Mean and Total Curvature of a Dual Surface in Isotropic Spaces. International Electronic Journal of Geometry, 15(1), 1-10.
ARTYKBAEV, A., & ISMOİLOV, S. (2022). Special Mean and Total Curvature of a Dual Surface in Isotropic Spaces. International Electronic Journal of Geometry, 15(1), 1-10.
Aydin M.E., Classification of surfaces in isotropic and pseudo-isotropic spaces, Ukrainian Mathematical Journal, 2020, Volume-72(3), pp. 329-347.
Lone, M.S., Karacan M.K.: Dual translation surfaces in the three dimensional simply isotropic space I31. Tamkang Journal of mathematics. 49(1), 67-77, 2018.
Artikbayev, A., & Ismoilov, S. (2020). O secheniya ploskosti so izotropnogo prostranstva. Scientific Journal of Samarkand University, 5(123), 84-89.
Ismoilov, S., & Sultonov, B. (2020). Cyclic surfaces in pseudo-euclidean space. International Journal of Statistics and Applied Mathematics, 3, 28-31.
Abdullaaziz, A. (2022). SURFACE RECOVERING BY A GIVE TOTAL AND MEAN CURVATURE IN ISOTROPIC SPACE R 3 ². Palestine Journal of Mathematics, 11(3).
Strubecker K., Differential geometry of isotropic space I; Math.Z. vol-47, 743-777, 1942.