Geological and Environmental Engineering | Article | Published 2022-05-04

Atmospheric dust dynamics over Central Asia: A perspective view from loess deposits

Authors:

Yue Li

Yougui Song

Dimitris Kaskaoutis

Xiaoxiao Zhang

Rustam Orozbaev

Publisher: Elsevier
Collection: Gondwana Research
Keywords: Central Asian loess; Westerly jet; Siberian high; NAO/AO; CasHKI

Abstract

Different origins of loess deposits in northern and southern Central Asia are not only associated with Central Asian topography, but also with aeolian dust dynamics. However, the latter has received far less attention so far. This review focuses on atmospheric dust dynamics for loess deposition in Central Asia, aiming to heal this knowledge gap. Comparisons of loess grain size data from the Chinese Loess Plateau, and the northern and southern Central Asia suggested that the Siberian High-pressure system largely controlled dust mobilization and loess accumulation in northern Central Asia, instead of southern Central Asia. The North Atlantic Oscillation (NAO) mode also provided an additional promising solution to trigger of loess accumulation in the North Tianshan Mountains. In southern Central Asia, intensity of dust activity was majorly determined by the Caspian Sea-Hindu Kush Index (CasHKI), with stronger dust dynamics under higher CasHKI modes. However, the causes of variations in the CasHKI intensity represent a future challenge. The CasHKI values also influenced the wind dynamics controlling dust mobilization in the Fergana Valley. Therefore, the Central Asia can be divided into two parts regarding the aeolian dust dynamics, with a boundary located in the North Tianshan Mountains and the south of Aral Sea. The Siberian High and NAO phase appeared to affect the dust activity and loess accumulation in the northern part; while dust entrainment and deposition were mostly determined by the CasHKI mode in the southern part. However, precisely determining the boundary highlights the necessity of investigations on loess deposits in the Tashkent region. In addition, we further recommend that the dynamic linkages between the mid-latitude Westerlies and aeolian loess deposition constitute a future critical research topic in Central Asia.

References

  1. References
  2. Aizen et al., 1997
  3. V.B. Aizen, E.M. Aizen, J.M. Melack, J. Dozier
  4. Climatic and hydrologic changes in the Tien Shan, Central Asia
  5. J. Clim., 10 (6) (1997), pp. 1393-1404
  6. Berger and Loutre, 1991
  7. A. Berger, M.F. Loutre
  8. Insolation values for the climate of the last 10 million years
  9. Quat. Sci. Rev., 10 (4) (1991), pp. 297-317
  10. Article
  11. Bond et al., 1992
  12. G. Bond, H. Heinrich, W. Broecker, L. Labeyrie, J. McManus, J. Andrews, S. Huon, R. Jantschik, S. Clasen, C. Simet, K. Tedesco, M. Klas, G. Bonani, S. Ivy
  13. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period
  14. Nature, 360 (6401) (1992), pp. 245-249
  15. Bond et al., 2001
  16. G. Bond, B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, G. Bonani
  17. Persistent solar influence on North Atlantic climate during the Holocene
  18. Science, 294 (5549) (2001), pp. 2130-2136
  19. Chen et al., 2008
  20. F. Chen, Z. Yu, M. Yang, E. Ito, S. Wang, D.B. Madsen, X. Huang, Y. Zhao, T. Sato, H. John B. Birks, I. Boomer, J. Chen, C. An, B. Wünnemann
  21. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history
  22. Quat. Sci. Rev., 27 (3–4) (2008), pp. 351-364
  23. Clark and Pollard, 1998
  24. P.U. Clark, D. Pollard
  25. Origin of the middle Pleistocene transition by ice sheet erosion of regolith
  26. Paleoceanography, 13 (1) (1998), pp. 1-9
  27. View Record in ScopusGoogle Scholar
  28. Cohen et al., 2001
  29. J. Cohen, K. Saito, D. Entekhabi
  30. The role of the Siberian high in Northern Hemisphere climate variability
  31. Geophys. Res. Lett., 28 (2) (2001), pp. 299-302
  32. View Record in ScopusGoogle Scholar
  33. Dayan et al., 2008
  34. U. Dayan, B. Ziv, T. Shoob, Y. Enzel
  35. Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations
  36. Int. J. Climatol., 28 (7) (2008), pp. 915-924
  37. CrossRefView Record in ScopusGoogle Scholar
  38. Dee et al., 2011
  39. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, F. Vitart
  40. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  41. Q. J. Roy. Meteorol. Soc., 137 (656) (2011), pp. 553-597
  42. CrossRefView Record in ScopusGoogle Scholar
  43. Deser, 2000
  44. C. Deser
  45. On the teleconnectivity of the “Arctic Oscillation”
  46. Geophys. Res. Lett., 27 (6) (2000), pp. 779-782
  47. View Record in ScopusGoogle Scholar
  48. Dickson et al., 2000
  49. R.R. Dickson, T.J. Osborn, J.W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev, W. Maslowski
  50. The Arctic Ocean response to the North Atlantic oscillation
  51. J. Clim., 13 (15) (2000), pp. 2671-2696
  52. View Record in ScopusGoogle Scholar
  53. Ding and Krishnamurti, 1987
  54. Y. Ding, T.N. Krishnamurti
  55. Heat-budget of the Siberian high and the winter monsoon
  56. Mon. Weather. Rev., 115 (10) (1987), pp. 2428-2449
  57. View Record in ScopusGoogle Scholar
  58. Ding et al., 1995
  59. Z. Ding, T. Liu, N.W. Rutter, Z. Yu, Z. Guo, R. Zhu
  60. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years
  61. Quat. Res., 44 (2) (1995), pp. 149-159
  62. Article
  63. Download PDFCrossRefView Record in ScopusGoogle Scholar
  64. Ding et al., 2002
  65. Z.L. Ding, V. Ranov, S.L. Yang, A. Finaev, J.M. Han, G.A. Wang
  66. The loess record in southern Tajikistan and correlation with Chinese loess
  67. Earth Planet. Sci. Lett., 200 (3–4) (2002), pp. 387-400
  68. Article
  69. Download PDFView Record in ScopusGoogle Scholar
  70. DiPietro et al., 2017
  71. L.M. DiPietro, S.G. Driese, T.W. Nelson, J.L. Harvill
  72. Variations in late Quaternary wind intensity from grain-size partitioning of loess deposits in the Nenana River Valley
  73. Alaska. Quat. Res., 87 (2) (2017), pp. 258-274
  74. CrossRefView Record in ScopusGoogle Scholar
  75. Dodonov, 1991
  76. A.E. Dodonov
  77. Loess of Central Asia
  78. GeoJournal, 24 (1991), pp. 185-194
  79. View Record in ScopusGoogle Scholar
  80. Dodonov and Baiguzina, 1995
  81. A.E. Dodonov, L.L. Baiguzina
  82. Loess stratigraphy of Central Asia: palaeoclimatic and palaeoenvironmental aspects
  83. Quat. Sci. Rev., 14 (7–8) (1995), pp. 707-720
  84. Article
  85. Download PDFView Record in ScopusGoogle Scholar
  86. Dong et al., 2018
  87. W.H. Dong, Y.L. Lin, J.S. Wright, Y.Y. Xie, Y. Ming, H. Zhang, R.S. Chen, Y.N. Chen, F.H. Xu, N.M. Lin, C.Q. Yu, B. Zhang, S. Jin, K. Yang, Z.Q. Li, J.P. Guo, L. Wang, G.H. Lin
  88. Regional disparities in warm season rainfall changes over arid eastern-central Asia
  89. Sci. Rep., 8 (2018), p. 13051
  90. View Record in ScopusGoogle Scholar
  91. Doughty et al., 2021
  92. A.M. Doughty, M.R. Kaplan, C. Peltier, S. Barker
  93. A maximum in global glacier extent during MIS 4
  94. Quat. Sci. Rev., 261 (2021), p. 106948
  95. Article
  96. Download PDFView Record in ScopusGoogle Scholar
  97. Engelbrecht and Derbyshire, 2010
  98. J.P. Engelbrecht, E. Derbyshire
  99. Airborne Mineral Dust
  100. Elements, 6 (4) (2010), pp. 241-246
  101. CrossRefView Record in ScopusGoogle Scholar
  102. Engelstaedter et al., 2006
  103. S. Engelstaedter, I. Tegen, R. Washington
  104. North African dust emissions and transport
  105. Earth-Sci. Rev., 79 (1–2) (2006), pp. 73-100
  106. Article
  107. Download PDFView Record in ScopusGoogle Scholar
  108. Fan et al., 2021
  109. Y. Fan, J. Jia, D. Xia, M. Meadows, Z. Wang
  110. Seasonality of response to millennial-scale climate events of the last glacial: evidence from loess records over mid-latitude Asia
  111. Geochem. Geophys. Geosyst., 22 (2021)
  112. e2021GC009903
  113. Google Scholar
  114. Fitzsimmons et al., 2020
  115. K.E. Fitzsimmons, M. Nowatzki, A.K. Dave, H. Harder
  116. Intersections between wind regimes, topography and sediment supply: perspectives from aeolian landforms in Central Asia
  117. Palaeog. Palaeoclimatol. Palaeoecol., 540 (2020), p. 109531
  118. Article
  119. Download PDFView Record in ScopusGoogle Scholar
  120. Fitzsimmons et al., 2018
  121. K.E. Fitzsimmons, T. Sprafke, C. Zielhofer, C. Gunter, J.M. Deom, R. Sala, R. Iovita
  122. Loess accumulation in the Tian Shan piedmont: implications for palaeoenvironmental change in arid Central Asia
  123. Quat. Int., 469 (2018), pp. 30-43
  124. Article
  125. Download PDFView Record in ScopusGoogle Scholar
  126. Frechen and Dodonov, 1998
  127. M. Frechen, A.E. Dodonov
  128. Loess chronology of the Middle and Upper Pleistocene in Tadjikistan
  129. Geol. Rundsch., 87 (1) (1998), pp. 2-20
  130. Google Scholar
  131. Gao et al., 2021
  132. F. Gao, X. Zheng, J. Jia, K. Li, D. Xia, J. Yang, H. Lu, F. Shi, Z. Chen, S. Wang
  133. Evolution of near-surface wind strength in northeastern arid central Asia during the holocene
  134. Paleoceanogr. Paleocl., 36 (2021)
  135. e2020PA003970
  136. Google Scholar
  137. Ge et al., 2016
  138. Y. Ge, J. Abuduwaili, L. Ma, D. Liu
  139. Temporal variability and potential diffusion characteristics of dust aerosol originating from the Aral Sea basin, central Asia
  140. Water Air Soil Pollut., 227 (2016), p. 63
  141. View Record in ScopusGoogle Scholar
  142. Gelaro et al., 2017
  143. R. Gelaro, W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S.D. Schubert, M. Sienkiewicz, B. Zhao
  144. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)
  145. J. Clim., 30 (14) (2017), pp. 5419-5454
  146. View Record in ScopusGoogle Scholar
  147. Gholami et al., 2021
  148. H. Gholami, A. Mohammadifar, H. Malakooti, Y. Esmaeilpour, S. Golzari, F. Mohammadi, Y. Li, Y. Song, D.G. Kaskaoutis, K.E. Fitzsimmons, A.L. Collins
  149. Integrated modelling for mapping spatial sources of dust in central Asia-An important dust source in the global atmospheric system
  150. Atmos. Pollut. Res., 12 (9) (2021), p. 101173
  151. Article
  152. Download PDFView Record in ScopusGoogle Scholar
  153. Gintzburger et al., 2005
  154. G. Gintzburger, H.N. Le Houérou, K.N. Toderich
  155. The steppes of Middle Asia: post-1991 agricultural and rangeland adjustment
  156. Arid. Land. Res. Manag., 19 (3) (2005), pp. 215-239
  157. CrossRefView Record in ScopusGoogle Scholar
  158. Gong and Ho, 2002
  159. D.-Y. Gong, C.-H. Ho
  160. The Siberian High and climate change over middle to high latitude Asia
  161. Theor. Appl. Climatol., 72 (1-2) (2002), pp. 1-9
  162. View Record in ScopusGoogle Scholar
  163. Goudie, 2014
  164. A.S. Goudie
  165. Desert dust and human health disorders
  166. Environ. Int., 63 (2014), pp. 101-113
  167. Article
  168. Download PDFGoogle Scholar
  169. Gowan et al., 2021
  170. E.J. Gowan, X. Zhang, S. Khosravi, A. Rovere, P. Stocchi, A.L. Hughes, R. Gyllencreutz, J. Mangerud, J.-I. Svendsen, G. Lohmann
  171. A new global ice sheet reconstruction for the past 80 000 years
  172. Nat. Commun., 12 (2021), pp. 1-9
  173. Google Scholar
  174. Groll et al., 2013
  175. M. Groll, C. Opp, I. Aslanov
  176. Spatial and temporal distribution of the dust deposition in Central Asia – results from a long term monitoring program
  177. Aeolian Res., 9 (2013), pp. 49-62
  178. Article
  179. Download PDFView Record in ScopusGoogle Scholar
  180. Guan et al., 2019
  181. X. Guan, L. Yang, Y. Zhang, J. Li
  182. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China
  183. Global Planet. Change, 172 (2019), pp. 159-178
  184. Article
  185. Download PDFView Record in ScopusGoogle Scholar
  186. Hamidianpour et al., 2021
  187. M. Hamidianpour, S.M.A. Jahanshahi, D.G. Kaskaoutis, A. Rashki, P.G. Nastos
  188. Climatology of the Sistan Levar wind: atmospheric dynamics driving its onset, duration and withdrawal
  189. Atmos. Res., 260 (2021), p. 105711
  190. Article
  191. Download PDFView Record in ScopusGoogle Scholar
  192. Hamzeh et al., 2016
  193. M.A. Hamzeh, M.H.M. Gharaie, H.A.K. Lahijani, M. Djamali, R.M. Harami, A.N. Beni
  194. Holocene hydrological changes in SE Iran, a key region between Indian summer monsoon and Mediterranean winter precipitation zones, as revealed from a lacustrine sequence from Lake Hamoun
  195. Quat. Int., 408 (2016), pp. 25-39
  196. Article
  197. Download PDFView Record in ScopusGoogle Scholar
  198. Hao et al., 2012
  199. Q. Hao, L. Wang, F. Oldfield, S. Peng, L.i. Qin, Y. Song, B. Xu, Y. Qiao, J. Bloemendal, Z. Guo
  200. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability
  201. Nature, 490 (7420) (2012), pp. 393-396
  202. CrossRefView Record in ScopusGoogle Scholar
  203. Huang et al., 2011
  204. X. Huang, H. Oberhänsli, H. von Suchodoletz, P. Sorrel
  205. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years
  206. Quat. Sci. Rev., 30 (25–26) (2011), pp. 3661-3674
  207. Article
  208. Download PDFView Record in ScopusGoogle Scholar
  209. Indoitu et al., 2015
  210. R. Indoitu, G. Kozhoridze, M. Batyrbaeva, I. Vitkovskaya, N. Orlovsky, D.G. Blumberg, L. Orlovsky
  211. Dust emission and environmental changes in the dried bottom of the Aral Sea
  212. Aeolian Res., 17 (2015), pp. 101-115
  213. Article
  214. Download PDFView Record in ScopusGoogle Scholar
  215. Indoitu et al., 2012
  216. R. Indoitu, L. Orlovsky, N. Orlovsky
  217. Dust storms in Central Asia: spatial and temporal variations
  218. J. Arid Environ., 85 (2012), pp. 62-70
  219. Article
  220. Download PDFView Record in ScopusGoogle Scholar
  221. Issanova and Abuduwaili, 2017
  222. G. Issanova, J. Abuduwaili
  223. Aeolian processes as dust storms in the deserts of central Asia and Kazakhstan
  224. U. Förstner, W.H. Rulkens, W. Salomons (Eds.), Environmental Science and Engineering, Springer, Singapore (2017)
  225. Google Scholar
  226. Issanova et al., 2015
  227. G. Issanova, J. Abuduwaili, O. Galayeva, O. Semenov, T. Bazarbayeva
  228. Aeolian transportation of sand and dust in the Aral Sea region
  229. Int. J. Environ. Sci. Technol., 12 (10) (2015), pp. 3213-3224
  230. CrossRefView Record in ScopusGoogle Scholar
  231. Jia et al., 2022
  232. J. Jia, N. Wang, Z. Wang, S. Wang, M. Meadows, L. Wang, Y. Fan, J. Chen
  233. Weakened dust activity in southern Central Asia during Heinrich events
  234. Palaeogeog. Palaeoclimatol. Palaeoecol., 587 (2022), p. 110805
  235. Article
  236. Download PDFView Record in ScopusGoogle Scholar
  237. Kang et al., 2020
  238. S. Kang, J. Du, N. Wang, J. Dong, D. Wang, X. Wang, X. Qiang, Y. Song
  239. Early Holocene weakening and mid-to late Holocene strengthening of the East Asian winter monsoon
  240. Geology, 48 (2020), pp. 1043-1047
  241. CrossRefView Record in ScopusGoogle Scholar
  242. Kang et al., 2003
  243. S. Kang, P.A. Mayewski, Y. Yan, D. Qin, T. Yao, J. Ren
  244. Dust records from three ice cores: relationships to spring atmospheric circulation over the Northern Hemisphere
  245. Atmos. Environ., 37 (34) (2003), pp. 4823-4835
  246. Article
  247. Download PDFView Record in ScopusGoogle Scholar
  248. Kang et al., 2015
  249. S. Kang, H.M. Roberts, X. Wang, Z. An, M. Wang
  250. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the Last Glacial Maximum
  251. Aeolian Res., 19 (2015), pp. 251-258
  252. Article
  253. Download PDFCrossRefView Record in ScopusGoogle Scholar
  254. Kang et al., 2022
  255. S. Kang, X. Wang, N. Wang, Y. Song, D. Wang, J. Peng
  256. Siberian High Modulated Suborbital-scale Dust Accumulation Changes over the Past 30 ka in the Eastern Yili Basin, Central Asia
  257. Paleoceanography and Paleoclimatology (2022), Article e2021PA004360, 10.1029/2021PA004360
  258. In press
  259. Google Scholar
  260. Kaskaoutis et al., 2019
  261. D. Kaskaoutis, U. Dumka, A. Rashki, B. Psiloglou, A. Gavriil, A. Mofidi, K. Petrinoli, D. Karagiannis, H. Kambezidis
  262. Analysis of intense dust storms over the eastern Mediterranean in March 2018: impact on radiative forcing and Athens air quality
  263. Atmos. Environ., 209 (2019), pp. 23-39
  264. Article
  265. Download PDFView Record in ScopusGoogle Scholar
  266. Kaskaoutis et al., 2018
  267. D.G. Kaskaoutis, E.E. Houssos, F. Minvielle, A. Rashki, I. Chiapello, U.C. Dumka, M. Legrand
  268. Long-term variability and trends in the Caspian Sea – Hindu Kush index: influence on atmospheric circulation patterns, temperature and rainfall over the Middle East and Southwest Asia
  269. Global Planet. Change, 169 (2018), pp. 16-33
  270. Article
  271. Download PDFView Record in ScopusGoogle Scholar
  272. Kaskaoutis et al., 2016
  273. D.G. Kaskaoutis, E.E. Houssos, A. Rashki, P. Francois, M. Legrand, D. Goto, A. Bartzokas, H.D. Kambezidis, T. Takemura
  274. The Caspian Sea-Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia
  275. Global Planet. Change, 137 (2016), pp. 10-23
  276. Article
  277. Download PDFView Record in ScopusGoogle Scholar
  278. Kaskaoutis et al., 2017
  279. D.G. Kaskaoutis, A. Rashki, E.E. Houssos, M. Legrand, P. Francois, A. Bartzokas, H.D. Kambezidis, U.C. Dumka, D. Goto, T. Takemura
  280. Assessment of changes in atmospheric dynamics and dust activity over southwest Asia using the Caspian Sea-Hindu Kush Index
  281. Int. J. Climatol., 37 (2017), pp. 1013-1034
  282. CrossRefView Record in ScopusGoogle Scholar
  283. Kaskaoutis et al., 2015
  284. D.G. Kaskaoutis, A. Rashki, E.E. Houssos, A. Mofidi, D. Goto, A. Bartzokas, P. Francois, M. Legrand
  285. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran
  286. Clim. Dyn., 45 (1–2) (2015), pp. 407-424
  287. CrossRefView Record in ScopusGoogle Scholar
  288. Kindler et al., 2014
  289. P. Kindler, M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, M. Leuenberger
  290. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core
  291. Clim. Past., 10 (2014), pp. 887-902
  292. CrossRefView Record in ScopusGoogle Scholar
  293. Kutzbach et al., 2014
  294. J.E. Kutzbach, G. Chen, H. Cheng, R.L. Edwards, Z. Liu
  295. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality
  296. Clim. Dyn., 42 (3–4) (2014), pp. 1079-1095
  297. CrossRefView Record in ScopusGoogle Scholar
  298. Kutzbach et al., 2020
  299. J.E. Kutzbach, J. Guan, F. He, A.S. Cohen, I.J. Orland, G. Chen
  300. African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments
  301. Proc. Nat. Acad. Sci., 117 (5) (2020), pp. 2255-2264
  302. CrossRefView Record in ScopusGoogle Scholar
  303. Labban et al., 2021
  304. A.H. Labban, A.-W. Mashat, A.M. Awad
  305. The variability of the Siberian high ridge over the Middle East
  306. Int. J. Climatol., 41 (1) (2021), pp. 104-130
  307. CrossRefView Record in ScopusGoogle Scholar
  308. Lai et al., 2009
  309. ZhongPing Lai, K. Kaiser, H. Brückner
  310. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history
  311. Quat. Res., 72 (3) (2009), pp. 421-430
  312. Article
  313. Download PDFCrossRefView Record in ScopusGoogle Scholar
  314. Laine et al., 2009
  315. A. Laine, M. Kageyama, D. Salas-Mélia, A. Voldoire, G. Rivière, G. Ramstein, S. Planton, S. Tyteca, J.Y. Peterschmitt
  316. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation
  317. Clim. Dyn., 32 (5) (2009), pp. 593-614
  318. CrossRefView Record in ScopusGoogle Scholar
  319. Lan et al., 2021
  320. J. Lan, T. Wang, J. Dong, S. Kang, P. Cheng, K. Zhou, X. Liu, Y. Wang, L.e. Ma
  321. The influence of ice sheet and solar insolation on Holocene moisture evolution in northern Central Asia
  322. Earth Sci. Rev., 217 (2021), p. 103645
  323. Article
  324. Download PDFView Record in ScopusGoogle Scholar
  325. Lan et al., 2020
  326. J. Lan, J. Zhang, P. Cheng, X. Ma, L.i. Ai, S. Chawchai, K. Zhou, T. Wang, K. Yu, E. Sheng, S. Kang, J. Zang, D. Yan, Y. Wang, L. Tan, H. Xu
  327. Late Holocene hydroclimatic variation in central Asia and its response to mid-latitude Westerlies and solar irradiance
  328. Quat. Sci. Rev., 238 (2020), p. 106330
  329. Article
  330. Download PDFView Record in ScopusGoogle Scholar
  331. Lau et al., 2006
  332. K.M. Lau, M.K. Kim, K.M. Kim
  333. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau
  334. Clim. Dyn., 26 (7–8) (2006), pp. 855-864
  335. CrossRefView Record in ScopusGoogle Scholar
  336. Lazarenko et al., 1981
  337. A.A. Lazarenko, N.S. Bolikhovskaya, V.V. Semenov
  338. An attempt at a detailed stratigraphic subdivision of the loess association of the Tashkent region
  339. Int. Geol. Rev., 23 (11) (1981), pp. 1335-1346
  340. CrossRefView Record in ScopusGoogle Scholar
  341. Li et al., 2020a
  342. G. Li, H.e. Yang, T. Stevens, X. Zhang, H. Zhang, H. Wei, W. Zheng, L. Li, X. Liu, J. Chen, D. Xia, C. Oldknow, W. Ye, F. Chen
  343. Differential ice volume and orbital modulation of Quaternary moisture patterns between Central and East Asia
  344. Earth Planet. Sci. Lett., 530 (2020), p. 115901
  345. Article
  346. Download PDFView Record in ScopusGoogle Scholar
  347. Li et al., 2008
  348. J. Li, R. Yu, T. Zhou
  349. Teleconnection between NAO and climate downstream of the Tibetan Plateau
  350. J. Clim., 21 (2008), pp. 4680-4690
  351. View Record in ScopusGoogle Scholar
  352. Li and Sokolik, 2018
  353. L. Li, I.N. Sokolik
  354. Analysis of dust aerosol retrievals using satellite data in Central Asia
  355. Atmosphere, 9 (2018), p. 288
  356. CrossRefView Record in ScopusGoogle Scholar
  357. Li and Song, 2021
  358. Y. Li, Y. Song
  359. Discussion of the paper “Loess genesis and worldwide distribution” by Yanrong Li, Wenhui Shi, Adnan Aydin, et al.
  360. Earth-Sci. Rev., 221 (2021), p. 103151
  361. Article
  362. Download PDFView Record in ScopusGoogle Scholar
  363. Li et al., 2018a
  364. Y. Li, Y. Song, K.E. Fitzsimmons, H. Chang, R. Orozbaev, X. Li
  365. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin
  366. Clim. Past., 14 (2018), pp. 271-286
  367. Article
  368. Download PDFCrossRefGoogle Scholar
  369. Li et al., 2018b
  370. Y. Li, Y. Song, K.E. Fitzsimmons, X. Chen, Q. Wang, H. Sun, Z. Zhang
  371. New evidence for the provenance and formation of loess deposits in the Ili River Basin
  372. Arid Central Asia. Aeolian Res., 35 (2018), pp. 1-8
  373. Article
  374. Download PDFGoogle Scholar
  375. Li et al., 2019a
  376. Y. Li, Y. Song, D.G. Kaskaoutis, X. Chen, Y. Mamadjanov, L. Tan
  377. Atmospheric dust dynamics in southern Central Asia: implications for buildup of Tajikistan loess sediments
  378. Atmos. Res., 229 (2019), pp. 74-85
  379. Article
  380. Download PDFGoogle Scholar
  381. Li et al., 2016a
  382. Y. Li, Y. Song, Z. Lai, L. Han, Z. An
  383. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis
  384. Sci. Rep., 6 (2016), p. 32365
  385. View Record in ScopusGoogle Scholar
  386. Li et al., 2020b
  387. Y. Li, Y. Song, R. Orozbaev, J. Dong, X. Li, J. Zhou
  388. Moisture evolution in Central Asia since 26 ka: insights from a Kyrgyz loess section, Western Tian Shan
  389. Quat. Sci. Rev., 249 (2020), p. 106604
  390. Article
  391. Download PDFView Record in ScopusGoogle Scholar
  392. Li et al., 2019b
  393. Y. Li, Y. Song, M. Qiang, Y. Miao, M. Zeng
  394. Atmospheric dust variations in the Ili Basin, Northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence
  395. J. Geophys. Res.: Atmosph., 124 (15) (2019), pp. 8449-8466
  396. CrossRefView Record in ScopusGoogle Scholar
  397. Li et al., 2016b
  398. Y. Li, Y.G. Song, X.L. Chen, J.C. Li, Y. Mamadjanov, J. Aminov
  399. Geochemical composition of Tajikistan loess and its provenance implications
  400. Palaeogeogr. Palaeoclimatol. Palaeoecol., 446 (2016), pp. 186-194
  401. Article
  402. Download PDFCrossRefGoogle Scholar
  403. Li et al., 2020c
  404. Y. Li, Y. Song, K.E. Fitzsimmons, X. Chen, C. Prud'homme, X. Zong
  405. Origin of loess deposits in the North Tian Shan piedmont, Central Asia
  406. Palaeogeogr. Palaeoclimatol. Palaeoecol., 559 (2020), p. 109972
  407. Article
  408. Download PDFView Record in ScopusGoogle Scholar
  409. Li et al., 2021
  410. Y. Li, Y.G. Song, D.G. Kaskaoutis, J.B. Zan, R. Orozbaev, L.C. Tan, X.L. Chen
  411. Aeolian dust dynamics in the Fergana Valley, Central Asia, since similar to 30 ka inferred from loess deposits
  412. Geosci. Front., 12 (2021), Article 101180, 10.1016/j.gsf.2021.101180
  413. Article
  414. Download PDFView Record in ScopusGoogle Scholar
  415. Li et al., 2015
  416. Y. Li, Y. Song, L. Yan, T. Chen, Z. An, C.-S. Li
  417. Timing and Spatial Distribution of Loess in Xinjiang, NW China
  418. Plos One, 10 (5) (2015), p. e0125492
  419. CrossRefView Record in ScopusGoogle Scholar
  420. Li et al., 2019c
  421. Y. Li, Y. Song, Q. Yin, L.i. Han, Y. Wang
  422. Orbital and millennial northern mid-latitude westerlies over the last glacial period
  423. Clim. Dyn., 53 (5–6) (2019), pp. 3315-3324
  424. CrossRefView Record in ScopusGoogle Scholar
  425. Lioubimtseva et al., 2005
  426. E. Lioubimtseva, R. Cole, J.M. Adams, G. Kapustin
  427. Impacts of climate and land-cover changes in arid lands of Central Asia
  428. J. Arid Environ., 62 (2) (2005), pp. 285-308
  429. Article
  430. Download PDFView Record in ScopusGoogle Scholar
  431. Lisiecki and Raymo, 2005
  432. L.E. Lisiecki, M.E. Raymo
  433. A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records
  434. Paleoceanography, 20 (2005), p. PA1003, 10.1029/2004PA001071
  435. View Record in ScopusGoogle Scholar
  436. Liu et al., 2021
  437. J. Liu, J. Ding, M. Rexiding, X. Li, J. Zhang, S.i. Ran, Q. Bao, X. Ge
  438. Characteristics of dust aerosols and identification of dust sources in Xinjiang
  439. China. Atmos. Environ., 262 (2021), p. 118651
  440. Article
  441. Download PDFView Record in ScopusGoogle Scholar
  442. Liu et al., 2020
  443. J. Liu, J. Ding, L. Li, X. Li, Z. Zhang, S.i. Ran, X. Ge, J. Zhang, J. Wang
  444. Characteristics of aerosol optical depth over land types in central Asia
  445. Sci. Total Environ., 727 (2020), p. 138676
  446. Article
  447. Download PDFView Record in ScopusGoogle Scholar
  448. Lu et al., 2020
  449. H. Lu, J. Jia, Q.Z. Yin, D.S. Xia, F.Y. Gao, H. Liu, Y.J. Fan, Z.J. Li, X. Wang, A. Berger, I. Oimuhammadzoda, M. Gadoev
  450. Atmospheric dynamics patterns in southern central Asia Since 800 ka revealed by loess-paleosol sequences in Tajikistan
  451. Geophys. Res. Lett. (2020), p. 47, 10.1029/2020GL088320
  452. View Record in ScopusGoogle Scholar
  453. Luetscher et al., 2015
  454. M. Luetscher, R. Boch, H. Sodemann, C. Spotl, H. Cheng, R.L. Edwards, S. Frisia, F. Hof, W. Muller
  455. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems
  456. Nat. Commun., 6 (2015), p. 6344
  457. View Record in ScopusGoogle Scholar
  458. Lydolph, 1977
  459. P.E. Lydolph
  460. Climates of the Soviet Union, World Survey of Climatology
  461. Elsevier, Amsterdam (1977)
  462. Google Scholar
  463. Machalett et al., 2008
  464. B. Machalett, E.A. Oches, M. Frechen, L. Zöller, U. Hambach, N.G. Mavlyanova, S.B. Marković, W. Endlicher
  465. Aeolian dust dynamics in central Asia during the Pleistocene: driven by the long-term migration, seasonality, and permanency of the Asiatic polar front
  466. Geochem. Geophys. Geosyst., 9 (8) (2008)
  467. Google Scholar
  468. Maher et al., 2010
  469. B.A. Maher, J.M. Prospero, D. Mackie, D. Gaiero, P.P. Hesse, Y. Balkanski
  470. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum
  471. Earth-Sci. Rev., 99 (1-2) (2010), pp. 61-97
  472. Article
  473. Download PDFView Record in ScopusGoogle Scholar
  474. Marx et al., 2018
  475. S.K. Marx, B.S. Kamber, H.A. McGowan, L.M. Petherick, G.H. McTainsh, N. Stromsoe, J.N. Hooper, J.-H. May
  476. Palaeo-dust records: a window to understanding past environments
  477. Global Planet. Change, 165 (2018), pp. 13-43
  478. Article
  479. Download PDFView Record in ScopusGoogle Scholar
  480. Meyer-Christoffer et al., 2018
  481. Meyer-Christoffer, A., Becker, A., Finger, P., Schneider, U., Ziese, M., 2018. GPCC climatology version 2018 at 0.25°: monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historical data. In: Global Precipitation Climatology Centre (GPCC, h.g.d.d.a.D.W. (Ed.), 2018 ed, Offenbach, Germany.
  482. Google Scholar
  483. Nobakht et al., 2019
  484. M. Nobakht, M. Shahgedanova, K. White, D. Altausen, S. Abdullaev, J. Hofer
  485. New inventory of dust sources in Central Asia derived from the daily MODIS imagery
  486. E3S Web Conf., 99 (2019), p. 01001
  487. CrossRefView Record in ScopusGoogle Scholar
  488. Nobakht et al., 2021
  489. M. Nobakht, M. Shahgedanova, K. White
  490. New inventory of dust emission sources in central Asia and northwestern China derived from MODIS imagery using dust enhancement technique
  491. J. Geophys. Res.: Atmosph., 126 (4) (2021)
  492. Google Scholar
  493. Ogi et al., 2003
  494. M. Ogi, Y. Tachibana, K. Yamazaki
  495. Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation
  496. Geophys. Res. Lett., 30 (2003), p. 1704, 10.1029/2003GL017280
  497. Google Scholar
  498. Opp et al., 2017
  499. C. Opp, M. Groll, I. Aslanov, T. Lotz, N. Vereshagina
  500. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): ground-based monitoring results from the LUCA project
  501. Quat. Int., 429 (2017), pp. 86-99
  502. Article
  503. Download PDFView Record in ScopusGoogle Scholar
  504. Orlovsky and Orlovsky, 2002
  505. Orlovsky, L., Orlovsky, N., 2002. White sand storms in Central Asia. Global Alarm: Dust and Sand Storms from the World’s Dry lands. UNCCD, Bangkok, 169–201.
  506. Google Scholar
  507. Orlovsky et al., 2005
  508. L. Orlovsky, N. Orlovsky, A. Durdyev
  509. Dust storms in Turkmenistan
  510. J. Arid Environ., 60 (1) (2005), pp. 83-97
  511. Article
  512. Download PDFView Record in ScopusGoogle Scholar
  513. Orlovsky and Indoitu, 2013
  514. N.S. Orlovsky, R. Indoitu
  515. Severe dust storms in Central Asia
  516. Arid Ecosyst., 3 (4) (2013), pp. 227-234
  517. View Record in ScopusGoogle Scholar
  518. Panagiotopoulos et al., 2005
  519. F. Panagiotopoulos, M. Shahgedanova, A. Hannachi, D.B. Stephenson
  520. Observed trends and teleconnections of the Siberian high: a recently declining center of action
  521. J. Clim., 18 (2005), pp. 1411-1422
  522. View Record in ScopusGoogle Scholar
  523. Papadimas et al., 2008
  524. C. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, I. Vardavas
  525. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data
  526. J. Geophys. Res.: Atmosph., 113 (2008), 10.1029/2007JD009189
  527. Google Scholar
  528. Pausata et al., 2011
  529. F.S.R. Pausata, C. Li, J.J. Wettstein, M. Kageyama, K.H. Nisancioglu
  530. The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
  531. Clim. Past., 7 (2011), pp. 1089-1101
  532. CrossRefView Record in ScopusGoogle Scholar
  533. Perşoiu et al., 2019
  534. A. Perşoiu, M. Ionita, H. Weiss
  535. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event–a hypothesis
  536. Clim. Past., 15 (2019), pp. 781-793
  537. CrossRefView Record in ScopusGoogle Scholar
  538. Pi et al., 2017
  539. H. Pi, B. Sharratt, J. Lei
  540. Atmospheric dust events in central Asia: relationship to wind, soil type, and land use
  541. J. Geophys. Res.: Atmosph., 122 (2017), pp. 6652-6671
  542. View Record in ScopusGoogle Scholar
  543. Prospero et al., 2002
  544. J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, T.E. Gill
  545. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product
  546. Rev. Geophys., 40 (1) (2002), pp. 2-1-2-31
  547. CrossRefGoogle Scholar
  548. Rachkovskaya, 2003
  549. Rachkovskaya, E.I., 2003. Botanical-geographic types of deserts, In: Rachkovskaya, E.I., Volkov, E.A., Khramtsov, V.N. (Eds.), Botanical Geography of Kazakhstan and Middle Asia (Desert Region), pp. 26–28.
  550. Google Scholar
  551. Raible et al., 2007
  552. C.C. Raible, M. Yoshimori, T.F. Stocker, C. Casty
  553. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions
  554. Clim. Dyn., 28 (4) (2007), pp. 409-423
  555. CrossRefView Record in ScopusGoogle Scholar
  556. Rashki et al., 2018
  557. A. Rashki, D. Kaskaoutis, A. Sepehr
  558. Statistical evaluation of the dust events at selected stations in Southwest Asia: From the Caspian Sea to the Arabian Sea
  559. Catena, 165 (2018), pp. 590-603
  560. Article
  561. Download PDFView Record in ScopusGoogle Scholar
  562. Riviere et al., 2010
  563. G. Riviere, A. Laine, G. Lapeyre, D. Salas-Melia, M. Kageyama
  564. Links between rossby wave breaking and the north atlantic oscillation-arctic oscillation in present-day and last glacial maximum climate simulations
  565. J. Clim., 23 (2010), pp. 2987-3008
  566. View Record in ScopusGoogle Scholar
  567. Rivière and Orlanski, 2007
  568. G. Rivière, I. Orlanski
  569. Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation
  570. J. Atmos. Sci., 64 (2007), pp. 241-266
  571. View Record in ScopusGoogle Scholar
  572. Roe, 2009
  573. G. Roe
  574. On the interpretation of Chinese loess as a paleoclimate indicator
  575. Quat. Res., 71 (2) (2009), pp. 150-161
  576. Article
  577. Download PDFCrossRefView Record in ScopusGoogle Scholar
  578. Rugenstein and Chamberlain, 2018
  579. J.K.C. Rugenstein, C.P. Chamberlain
  580. The evolution of hydroclimate in Asia over the Cenozoic: a stable-isotope perspective
  581. Earth-Sci. Rev., 185 (2018), pp. 1129-1156
  582. Google Scholar
  583. Rupakheti et al., 2020
  584. D. Rupakheti, M. Rupakheti, S.F. Abdullaev, X. Yin, S. Kang
  585. Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia
  586. Environ. Pollut., 265 (2020), p. 114872
  587. Article
  588. Download PDFView Record in ScopusGoogle Scholar
  589. Sahsamanoglou et al., 1991
  590. H.S. Sahsamanoglou, T.J. Makrogiannis, P.P. Kallimopoulos
  591. Some aspects of the basic characteristics of the siberian anticyclone
  592. Int. J. Climatol., 11 (8) (1991), pp. 827-839
  593. View Record in ScopusGoogle Scholar
  594. Schettler et al., 2014
  595. G. Schettler, A. Shabunin, H. Kemnitz, K. Knoeller, S. Imashev, A. Rybin, H.U. Wetzel
  596. Seasonal and diurnal variations in dust characteristics on the northern slopes of the Tien Shan - Grain-size, mineralogy, chemical signatures and isotope composition of attached nitrate
  597. J. Asian Earth Sci., 88 (2014), pp. 257-276
  598. Article
  599. Download PDFView Record in ScopusGoogle Scholar
  600. Serno et al., 2017
  601. S. Serno, G. Winckler, R.F. Anderson, S.L. Jaccard, S.S. Kienast, G.H. Haug
  602. Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia
  603. Geophys. Res. Lett., 44 (8) (2017), pp. 3796-3805
  604. View Record in ScopusGoogle Scholar
  605. Sha et al., 2018
  606. Y. Sha, Z. Shi, X. Liu, Z. An, X. Li, H. Chang
  607. Role of the Tian Shan mountains and pamir plateau in increasing spatiotemporal differentiation of precipitation over interior Asia
  608. J. Clim., 31 (19) (2018), pp. 8141-8162
  609. CrossRefView Record in ScopusGoogle Scholar
  610. Shen et al., 2016
  611. H. Shen, J. Abuduwaili, A. Samat, L. Ma
  612. A review on the research of modern aeolian dust in Central Asia
  613. Arab. J. Geosci., 9 (2016), pp. 1-16
  614. Google Scholar
  615. Shi et al., 2021
  616. L. Shi, J. Zhang, F. Yao, D.a. Zhang, H. Guo
  617. Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases
  618. Sci. Tot. Environ., 767 (2021), p. 144860
  619. Article
  620. Download PDFView Record in ScopusGoogle Scholar
  621. Shi et al., 2020
  622. L. Shi, J. Zhang, F. Yao, D.a. Zhang, H. Guo
  623. Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages
  624. Atmos. Environ., 222 (2020), p. 117176
  625. Article
  626. Download PDFView Record in ScopusGoogle Scholar
  627. Shindell et al., 2001
  628. D.T. Shindell, G.A. Schmidt, M.E. Mann, D. Rind, A. Waple
  629. Solar forcing of regional climate change during the Maunder Minimum
  630. Science, 294 (5549) (2001), pp. 2149-2152
  631. View Record in ScopusGoogle Scholar
  632. Sima et al., 2013
  633. A. Sima, M. Kageyama, D.D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, C. Hatte
  634. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits
  635. Clim. Past., 9 (2013), pp. 1385-1402
  636. CrossRefView Record in ScopusGoogle Scholar
  637. Singhvi et al., 2001
  638. A.K. Singhvi, A. Bluszcz, M.D. Bateman, M.S. Rao
  639. Luminescence dating of loess–palaeosol sequences and coversands: methodological aspects and palaeoclimatic implications
  640. Earth-Sci. Rev., 54 (1–3) (2001), pp. 193-211
  641. Article
  642. Download PDFView Record in ScopusGoogle Scholar
  643. Small et al., 1999
  644. E.E. Small, F. Giorgi, L.C. Sloan
  645. Regional climate model simulation of precipitation in central Asia: mean and interannual variability
  646. J. Geophys. Res.: Atmosph., 104 (1999), pp. 6563-6582
  647. View Record in ScopusGoogle Scholar
  648. Smalley et al., 2006
  649. I. Smalley, N. Mavlyanova, K.L. Rakhmatullaev, M.S. Shermatov, B. Machalett, K.H. Dhand, I. Jefferson
  650. The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion
  651. Quat. Int., 152 (2006), pp. 59-69
  652. Article
  653. Download PDFView Record in ScopusGoogle Scholar
  654. Song et al., 2021
  655. Y. Song, Y. Li, L. Cheng, X. Zong, S. Kang, A. Ghafarpour, X. Li, H. Sun, X. Fu, J. Dong, Y. Mamadjanov, R. Orozbaev, N. Shukurov, H. Gholami, S. Shukurov, M. Xie
  656. Spatio-temporal distribution of Quaternary loess across Central Asia
  657. Palaeogeogr. Palaeoclimatol. Palaeoecol., 567 (2021), p. 110279
  658. Article
  659. Download PDFView Record in ScopusGoogle Scholar
  660. Song et al., 2022
  661. Y. Song, J. Nie, C. Song, J. Zan
  662. Cenozoic climatic and environmental changes in Central Asia
  663. Palaeogeography, Palaeoclimatology, Palaeoecology, 597 (2022), Article 111012, 10.1016/j.palaeo.2022.111012
  664. Article
  665. Download PDFGoogle Scholar
  666. Song et al., 2018
  667. Y. Song, M. Zeng, X. Chen, Y. Li, H. Chang, Z. An, X. Guo
  668. Abrupt climatic events recorded by the Ili loess during the last glaciation in Central Asia: evidence from grain-size and minerals
  669. J. Asian Earth Sci., 155 (2018), pp. 58-67
  670. Article
  671. Download PDFCrossRefView Record in ScopusGoogle Scholar
  672. Song et al., 2014
  673. Y.G. Song, X.L. Chen, L.B. Qian, C.X. Li, Y. Li, X.X. Li, H. Chang, Z.S. An
  674. Distribution and composition of loess sediments in the Ili Basin, Central Asia
  675. Quat. Int., 334 (2014), pp. 61-73
  676. Article
  677. Download PDFView Record in ScopusGoogle Scholar
  678. Sun and An, 2005
  679. Y.B. Sun, Z.S. An
  680. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau
  681. J. Geophys. Res.: Atmosph. (2005), p. 110
  682. View Record in ScopusGoogle Scholar
  683. Sun et al., 2010
  684. Y. Sun, X. Wang, Q. Liu, S.C. Clemens
  685. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China
  686. Earth Planet. Sci. Lett., 289 (1–2) (2010), pp. 171-179
  687. Article
  688. Download PDFView Record in ScopusGoogle Scholar
  689. Sung et al., 2006
  690. M.K. Sung, W.T. Kwon, H.J. Baek, K.O. Boo, G.H. Lim, J.S. Kug
  691. A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation
  692. Geophys. Res Lett. (2006), p. 33
  693. View Record in ScopusGoogle Scholar
  694. Thompson and Wallace, 1998
  695. D.W.J. Thompson, J.M. Wallace
  696. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields
  697. Geophys. Res. Lett., 25 (9) (1998), pp. 1297-1300
  698. View Record in ScopusGoogle Scholar
  699. Tian et al., 2021
  700. S. Tian, J. Sun, Z. Zhang, S. Abdulov, M. Cao, M. Gadoev, I. Oimahmadov
  701. Loess deposits in the Tajik Basin, Central Asia: chronology, provenance and palaeoclimatic implications since the Last Glacial
  702. Boreas, 50 (1) (2021), pp. 147-166
  703. CrossRefView Record in ScopusGoogle Scholar
  704. Újvári et al., 2017
  705. G. Újvári, T. Stevens, M. Molnár, A. Demény, F. Lambert, G. Varga, A.T. Jull, B. Páll-Gergely, J.-P. Buylaert, J. Kovács
  706. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate
  707. Proc. Nat. Acad. Sci., 114 (50) (2017), pp. E10632-E10638
  708. https://doi.org/10.1073/pnas.1712651114
  709. View Record in ScopusGoogle Scholar
  710. Vandenberghe et al., 2014
  711. J. Vandenberghe, H.M. French, A. Gorbunov, S. Marchenko, A.A. Velichko, H.J. Jin, Z.J. Cui, T.J. Zhang, X.D. Wan
  712. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17ka BP
  713. Boreas, 43 (2014), pp. 652-666
  714. CrossRefView Record in ScopusGoogle Scholar
  715. Vandenberghe et al., 2006
  716. J. Vandenberghe, H. Renssen, K.o. van Huissteden, G. Nugteren, M. Konert, H. Lu, A. Dodonov, J.-P. Buylaert
  717. Penetration of Atlantic westerly winds into Central and East Asia
  718. Quat. Sci. Rev., 25 (17–18) (2006), pp. 2380-2389
  719. Article
  720. Download PDFView Record in ScopusGoogle Scholar
  721. Wang et al., 2018a
  722. F. Wang, Z. Li, X. Wang, B. Li, F. Chen
  723. Variation and interplay of the Siberian High and westerlies in central-east Asia during the past 1200 kyr
  724. Aeolian Res., 33 (2018), pp. 62-81
  725. Article
  726. Download PDFGoogle Scholar
  727. Wang et al., 2021
  728. H. Wang, W. Zhou, P. Shu, B. Hong, Z. An
  729. Two-stage evolution of glacial-period Asian monsoon circulation by shifts of westerly jet streams and changes of North American ice sheets
  730. Earth-Sci. Rev., 215 (2021), p. 103558
  731. Article
  732. Download PDFView Record in ScopusGoogle Scholar
  733. Wang et al., 2018b
  734. L. Wang, J. Jia, G. Li, Z. Li, X. Wang, F. Chen
  735. Fine-grained quartz OSL dating chronology of loess sequence from southern Tajikistan: implications for climate change in arid central Asia during MIS 2
  736. J. Asian Earth Sci., 155 (2018), pp. 116-123
  737. Article
  738. Download PDFGoogle Scholar
  739. Wang et al., 2016
  740. S. Wang, M. Zhang, Y. Che, F. Chen, F. Qiang
  741. Contribution of recycled moisture to precipitation in oases of arid central Asia: a stable isotope approach
  742. Water Resour. Res., 52 (4) (2016), pp. 3246-3257
  743. View Record in ScopusGoogle Scholar
  744. Wu and Wang, 2002
  745. B.Y. Wu, J. Wang
  746. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent
  747. Adv. Atmos. Sci., 19 (2) (2002), pp. 297-320
  748. View Record in ScopusGoogle Scholar
  749. Xi and Sokolik, 2015a
  750. Xi, X., Sokolik, I.N., 2015a. Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages. J. Geophys. Res.: Atmosph. 120, 12,175–112,197.
  751. Google Scholar
  752. Xi and Sokolik, 2015b
  753. X. Xi, I.N. Sokolik
  754. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia
  755. J. Geophys. Res.: Atmosph., 120 (4) (2015), pp. 1536-1564
  756. View Record in ScopusGoogle Scholar
  757. Yang et al., 2006
  758. S. Yang, F. Ding, Z. Ding
  759. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan
  760. Geochim. Cosmochim. Acta, 70 (7) (2006), pp. 1695-1709
  761. Article
  762. Download PDFView Record in ScopusGoogle Scholar
  763. Yang et al., 2021
  764. S. Yang, N. Liu, D. Li, T. Cheng, W. Liu, S. Li, H. Chen, L.i. Liu, Y. Luo
  765. Quartz OSL chronology of the loess deposits in the Western Qinling Mountains, China, and their palaeoenvironmental implications since the Last Glacial period
  766. Boreas, 50 (1) (2021), pp. 294-307
  767. CrossRefView Record in ScopusGoogle Scholar
  768. Yu and Lai, 2012
  769. L. Yu, Z. Lai
  770. OSL chronology and palaeoclimatic implications of aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau
  771. Palaeogeog. Palaeoclimatol. Palaeoecol., 337 (2012), pp. 120-129
  772. Article
  773. Download PDFView Record in ScopusGoogle Scholar
  774. Zhang et al., 2021
  775. T. Zhang, W. Han, Y. Han, S. Lü, D. Madsen, L. Yu, S. Yang, Y. Wang
  776. What drove late Holocene dust activity in central Asia, natural processes or human activity?
  777. Palaeogeogr. Palaeoclimatol. Palaeoecol., 578 (2021), p. 110585
  778. Article
  779. Download PDFView Record in ScopusGoogle Scholar
  780. Zhang et al., 2020
  781. X.-X. Zhang, C. Claiborn, J.-Q. Lei, J. Vaughan, S.-X. Wu, S.-Y. Li, L.-Y. Liu, Z.-F. Wang, Y.-D. Wang, S.-Y. Huang, J. Zhou
  782. Aeolian dust in Central Asia: spatial distribution and temporal variability
  783. Atmos. Environ., 238 (2020), p. 117734
  784. Article
  785. Download PDFView Record in ScopusGoogle Scholar
  786. Zhao et al., 2014
  787. L. Zhao, H. Jin, C. Li, Z. Cui, X. Chang, S.S. Marchenko, J. Vandenberghe, T. Zhang, D. Luo, D. Guo, G. Liu, C. Yi
  788. The extent of permafrost in China during the local Last Glacial Maximum (LLGM)
  789. Boreas, 43 (3) (2014), pp. 688-698
  790. CrossRefView Record in ScopusGoogle Scholar
  791. Zhou et al., 1995
  792. L.P. Zhou, A.E. Dodonov, N.J. Shackleton
  793. Thermoluminescence dating of the Orkutsay loess section in Tashkent region, Uzbekistan, Central Asia
  794. Quat. Sci. Rev., 14 (7–8) (1995), pp. 721-730
  795. Article
  796. Download PDFView Record in ScopusGoogle Scholar
Loading...
0

Views

0

Reads

0

Comments

0

Reviews

0

Liked

0

Shared

0

Bibliography

0

Citations

Like and share on

Cite this publication

Copy text below and use in your article