Energy and Power Engineering | Article | Published 2020-10-01

COMPARATIVE ANALYSIS OF MODERN CURRENT CONVERTERS

Authors:
Publisher: EPRA JOURNALS (IJMR)
Collection: EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Keywords: Large unchanging current, a large alternating current, Measurement Scale, magneto galvanic converters, magnetic modulation converters, electromechanical converters, magnetic resonance converters, current transformers.

Abstract

The article studies the problems of alternating and direct currents. Existing and widely spread types of great current converter meters are analyzed. Advantages of magneto-galvanic and magneto-modulating converters of great direct currents are explained as for as transformers for metering for great alternating currents. The ways of improving the construction of such devices are also shown here.

References

  1. 1. Amirov S.F., Khushbokov B.X., Muxsimov Sh.S.
  2. Wide-range current transformers for traction
  3. power supply systems. Monograph. Tashkent -
  4. "Science and Technology" 2018 162 p.
  5. 2. Semenko N. G., Gamazov Yu. A. Measuring
  6. transducers of large electric currents and their
  7. metrological support. –M.: Publishing house of
  8. standards, 1984. - 132 p.
  9. 3. Kazakov M.K. Measurement of large direct
  10. currents without breaking the circuit. - Ulyanovsk:
  11. UlSTU, 1997.
  12. 4. Afanasyev Yu. V. et al. Current transformers. - M.:
  13. Energoatomizdat, 1989.
  14. 5. Andreev Yu. A., Abramson G.V. Current
  15. transformers without breaking the circuit. -L.:
  16. Energy, 1979.
  17. 6. Razin G.I., Shelkin A.P. Contactless measurement
  18. of electric currents. –M .: Atomizdat, 1974.
  19. 7. Spektor S. A. Measurement of large constant
  20. currents. - L.: Energy, 1978.
  21. 8. Marquardt K.G. Electricity supply for electrified
  22. railways. Textbook for universities railway
  23. transport. –M.: Transport, 1982.
  24. 9. Urakseev M.A., Marchenko D.A., Marchenko R.A.
  25. Magneto-optical effects and sensors based on them
  26. // Sensors and Systems. - 2001, No. 1
  27. 10. Fakhriddin Nosirov, Urishev B.U, Bozor Ulugov,
  28. Jakhongir Dustmurodov, Panji Khaliyarov. (2020).
  29. Reduced Pump Power Consumption Micro
  30. Accumulating Power Plants. International Journal
  31. of Advanced Science and Technology, 29(7), 2128 -
  32. 2136. Retrieved from
  33. http://sersc.org/journals/index.php/IJAST/article/vi
  34. ew/17478
  35. 11. Dzhumaevich, U. B. (2020). Efficiency of use of
  36. autodesk inventor engineering programs and
  37. pedagogical information technologies in the field of “Resistance of materials” in the process of
  38. teaching students of technical universities.
  39. ACADEMICIA: An International Multidisciplinary
  40. Research Journal, 10(5), 130-143. Retrieved from
  41. https://saarj.com/wpcontent/uploads/ACADEMICIA-MAY-2020-FULLJOURNAL.pdf
  42. 12. Segaran, D., Holmes, D. G., & Mcgrath, B. P.
  43. (2009). Comparative analysis of single-and threephase dual active bridge bidirectional dc-dc
  44. converters. Australian Journal of Electrical and
  45. Electronics Engineering, 6(3), 329-337.
  46. https://doi.org/10.1080/1448837X.2009.11464251
  47. 13. Deblecker, O., Moretti, A., & Vallee, F. (2008,
  48. June). Comparative analysis of two zero-current
  49. switching isolated dc-dc converters for auxiliary
  50. railway supply. In 2008 International Symposium
  51. on Power Electronics, Electrical Drives,
  52. Automation and Motion (pp. 1186-1193). IEEE.
  53. https://doi.org/10.1109/SPEEDHAM.2008.4581237
  54. 14. Raximov N.R., Turaev B.E., Ulugov B.D.
  55. (2020/9/29). Development of a small photo
  56. generator based on the effect of anomalous photo
  57. voltage. Monografia pokonferecyjna science,
  58. research, development #33 #2 (pp. 25-27).
  59. Retrieved from http://xn--
  60. e1aajfpcds8ay4h.com.ua/pages/view/1357
  61. 15. Grdenić, G., Delimar, M., & Beerten, J. (2019).
  62. Comparative Analysis on Small-Signal Stability of
  63. Multi-Infeed VSC HVDC System With Different
  64. Reactive Power Control Strategies. Ieee Access, 7,
  65. 151724-151732.
  66. https://doi.org/10.1109/ACCESS.2019.2948290
  67. 16. Mitra, B., & Chowdhury, B. (2017, September).
  68. Comparative analysis of hybrid DC breaker and
  69. assembly HVDC breaker. In 2017 North American
  70. Power Symposium (NAPS) (pp. 1-6). IEEE.
  71. https://doi.org/10.1109/NAPS.2017.8107266
  72. 17. Seeman, M. D., Ng, V. W., Le, H. P., John, M.,
  73. Alon, E., & Sanders, S. R. (2010, June). A
  74. comparative analysis of Switched-Capacitor and
  75. inductor-based DC-DC conversion technologies.
  76. In 2010 IEEE 12th Workshop on Control and
  77. Modeling for Power Electronics (COMPEL) (pp. 1-
  78. 7). IEEE.
  79. https://doi.org/10.1109/COMPEL.2010.5562407
  80. 18. Corcau, J. I., Dinca, L., & Ureche, E. (2015, May).
  81. Comparative analysis of a dc to dc boost converter
  82. with constant and variable duty cycle. In 2015 9th
  83. International Symposium on Advanced Topics in
  84. Electrical Engineering (ATEE) (pp. 638-643).
  85. IEEE. https://doi.org/10.1109/ATEE.2015.7133894
  86. 19. Raximov N.R., Turaev B.E. (2020). Ulugov
  87. B.D. Optoelectronic devices based on
  88. nanocrystalline semiconductor (CDTE) AFN
  89. films. Monografia pokonferencyjna science,
  90. research, development #33 #2, (pp. 28-30).
  91. Retrieved from http://xn--
  92. e1aajfpcds8ay4h.com.ua/pages/view/1357
  93. 20. Kumar, A., Bhat, A. H., & Agarwal, P. (2017,
  94. October). Comparative analysis of dual active
  95. bridge isolated DC to DC converter with flyback
  96. converters for bidirectional energy transfer.
  97. In 2017 Recent Developments in Control,
  98. Automation & Power Engineering (RDCAPE) (pp.
  99. 382-387). IEEE.
  100. https://doi.org/10.1109/RDCAPE.2017.8358301
  101. 21. Denisov, Y. O., Stepenko, S. A., Gorodny, A. N., &
  102. Kravchenko, A. O. (2014, April). Input current
  103. parameters analysis for PFC based on quasiresonant and conventional boost converters.
  104. In 2014 IEEE 34th International Scientific
  105. Conference on Electronics and Nanotechnology
  106. (ELNANO) (pp. 393-397). IEEE.
  107. https://doi.org/10.1109/ELNANO.2014.6873446
  108. 22. Ulugov Bazar Dzhumaevich, (2020, September).
  109. Effectiveness of use of information technologies in
  110. teaching the subject of material resistance in
  111. higher education institutions. Innovative issues in
  112. the fields of technical and technological sciences.
  113. TSTU TB 2020. (pp. 32-34). Retrieved from
  114. https://www.researchgate.net/publication/3444613
  115. 20_OLIY_TA'LIM_MUASSASALARIDA_MATERIA
  116. LLAR_QARSHILIGI_FANINI_O'QITISHDA_INFO
  117. RMATSION_TEXNOLOGIYALARDAN_FOYDALA
  118. NISH_SAMARADORLIGI;
  119. 23. Dastgeer, F., & Gelani, H. E. (2017). A
  120. Comparative analysis of system efficiency for AC
  121. and DC residential power distribution
  122. paradigms. Energy and Buildings, 138, 648-654.
  123. https://doi.org/10.1016/j.enbuild.2016.12.077
  124. 24. Rezaoui, M. M., KOUZOU, A., Nezli, L., &
  125. Mahmoudian, M. O. (2013). Comparative analysis
  126. of PWM strategies of Venturini and Roy for the
  127. control of a [3x3] matrix converter. International
  128. Journal of Advanced Renewable Energy
  129. Researches (IJARER), 2(2).
  130. http://neredataltics.org/journals/index.php/IJARER
  131. /article/view/128
  132. 25. Patra, S. R., Choudhury, T. R., & Nayak, B. (2016,
  133. July). Comparative analysis of boost and buckboost converter for power factor correction using
  134. hysteresis band current control. In 2016 IEEE 1st
  135. International Conference on Power Electronics,
  136. Intelligent Control and Energy Systems
  137. (ICPEICES) (pp. 1-6). IEEE.
  138. https://doi.org/10.1109/ICPEICES.2016.7853353
  139. 26. Karaman, E., Farasat, M., & Trzynadlowski, A. M.
  140. (2014). A comparative study of series and cascaded
  141. Z-source matrix converters. IEEE Transactions on
  142. Industrial Electronics, 61(10), 5164-5173.
  143. https://doi.org/10.1109/TIE.2014.2301766
  144. 27. Rozhentseva, A. V., Suslova, A. S., & Zinoviev, G.
  145. S. (2013, July). Comparative analysis of
  146. prospective high-voltage direct current converters
  147. of electric locomotive. In 2013 14th International
  148. Conference of Young Specialists on
  149. Micro/Nanotechnologies and Electron Devices (pp.
  150. 399-401). IEEE.
  151. https://doi.org/10.1109/EDM.2013.6642023
  152. 28. Deblecker, O., Moretti, A., & Vallée, F. (2008).
  153. Comparative study of soft-switched isolated DCDC converters for auxiliary railway supply. IEEE
  154. transactions on power electronics, 23(5), 2218-
  155. 2229. https://doi.org/10.1109/TPEL.2008.2001879
  156. 29. Setlak, L., & Kowalik, R. (2016). Comparative
  157. analysis and simulation of selected components of
  158. modern on-board autonomous power systems
  159. (ASE) of modern aircraft in line with the concept of MEA/AEA. Lecture Notes in Engineering and
  160. Computer Science, 1.
  161. 30. Tytelmaier, K., Zakis, J., Husev, O., Veligorskyi,
  162. O., Khomenko, M., & Vinnikov, D. (2018).
  163. Comparative Analysis of High Power Density
  164. Bidirectional DC-DC Converters for Portable
  165. Energy Storage Applications. Electronics &
  166. Electrical Engineering, 24(6).
  167. 31. Matiushkin, O., Husev, O., Tytelmaier, K., Kroics,
  168. K., Veligorskyi, O., & Zakis, J. (2017, May).
  169. Comparative analysis of qZS-based bidirectional
  170. dc-dc converter for storage energy application.
  171. In Doctoral Conference on Computing, Electrical
  172. and Industrial Systems (pp. 409-418). Springer,
  173. Cham.
  174. 32. Tirtichny, A. (2008). The comparative analysis of
  175. characteristics of compensating converters of
  176. micromechanical inertial sensors. Information and
  177. communication technologies: problems,
  178. perspectives, 76-80.
0

Views

0

Reads

0

Comments

0

Reviews

0

Liked

0

Shared

0

References

0

Citations

Like and share on

Cite this publication

Copy text below and use in your article