Geological and Environmental Engineering | Article | Published 2018

Petrogenesis of gabbroic intrusions in the Valerianov-Beltau-Kurama magmatic arc, Uzbekistan: The role of arc maturity controlling the generation of giant porphyry Cu—Au deposits

Keywords: Gabbro Almalyk orefield Porphyries Cu—Au deposits Central Asian Orogenic Belt Arc maturity


Arc maturity is considered to play an important role in the mineralization of porphyry Cu—Au deposits. However, the early stage of arc is rarely preserved leading to controversies over arc evolution. Herewe investigate gabbroic intrusions from the Akcha, Beleuti and Kalmakyr arc in relation to the Almalyk porphyry Cu—Au orefield in Uzbekistan. The Akcha biotite gabbro shows medium to fine grained texture, and is composed of plagioclase and biotite with minor clinopyroxene, orthopyroxene, quartz and magnetite. The Beleuti and Kalmakyr gabbros display coarse-grained texture, and are dominated by plagioclase, amphibole and clinopyroxene. Zircon LA-ICP-MS U—Pb dating yields ages of 339.9±2.0Ma for Akcha biotite gabbro, 339.0±3.3 Ma for Beleuti gabbro and 335.0 ± 2.4 Ma for Kalmakyr gabbro. The emplacement ages of these intrusions are older than those of ore-bearing porphyries in the Almalyk orefield, indicating that the gabbros were emplaced during early stage of the arc evolution. The gabbroic rocks are characterized by high Mg# [100 × molar Mg2+/(Mg2++Fe2+), 41–61], low SiO2 contents (41.6–50.9 wt%), enrichment in large-ion lithophile elements and negative anomalies for high field strength elements, together with relatively depleted Sr-Nd-Hf isotopic compositions (0.7044–0.7057, −1.59- 1.96, 3.38–9.96, respectively). The geochemical features suggest that these rocks were mostly derived from the partial melting of mantle wedge modified by subduction-related fluids. Estimates on water contents based on the composition of amphibole show 4.9–5.3 wt% for the Akcha biotite gabbro, and 5.6–6.8 wt% for the Beleuti gabbro. The oxygen fugacity estimated by zircon Ce/Nd, Ce4+ /Ce3+ ratios are lower than those of porphyries from the giant porphyry deposits in the Central Asian Orogenic Belt. Our results, together with previously reported data on porphyries in the Almalyk orefield suggest that the gabbro was formed in an immature arc setting associated with the northward subduction of the Paleo-Turkestan oceanic plate, whereas the ore-bearing porphyries were formed in a mature arc.


  1. Allen,M.B.,Windley, B.F., Zhang, C., 1992. Palaeozoic collisional tectonics and magmatism
  2. of the Chinese Tien Shan, Central Asia. Tectonophysics 220, 89–115.
  3. Altherr, R., Topuz, G., Siebel, W., Şen, C., Meyer, H.P., Satir, M., Lahaye, Y., 2008. Geochemical
  4. and Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the eastern
  5. Pontides (NE Turkey). Lithos 105, 149–161.
  6. Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204 Pb.
  7. Chem. Geol. 192, 59–79.
  8. Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative oxidation states of magmas inferred
  9. from Ce(IV) /Ce(III) in zircon: application to porphyry copper deposits of northern
  10. Chile. Cont. Mineral. Petrol. 144 (3), 347–364.
  11. Bau, M., Knittel, U., 1993. Significance of slab-derived partial melts and aqueous fluids for
  12. the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt. Arayat,
  13. Philippines. Chem. Geol. 105, 233–251.
  14. Biske, Y.S., Seltmann, R., 2010. Paleozoic Tian-Shan as a transitional region between the
  15. Rheic and Urals-Turkestan oceans. Gondwana Res. 17 (2–3), 602–613.
  16. Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V.,
  17. Conticelli, S., 2009. Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of
  18. leucitebearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province,
  19. Central Italy: inferences on volcano evolution and magma genesis. Bull. Volcanol. 71,
  20. 977–1005.
  21. Briqueu, L., Bougault, H., Joron, J.L., 1984. Quantification of Nb, Ta, Ti and V anomalies in
  22. magmas associated with subduction zones: petrogenetic implications. Earth Planet.
  23. Sci. Lett. 68, 297–308.
  24. Castillo, P.R., 2012. Adakite petrogenesis. Lithos 134-135, 304–316.
  25. Cheng, Z.G., Zhang, Z.C., Chai, F.M., Hou, T., Santosh, M., Turesebekov, A., Nurtaev, B.S.,
  26. 2018. Carboniferous porphyry Cu-au deposits in the Almalyk orefield, Uzbekistan:
  27. the Sarycheku and Kalmakyr examples. Int. Geol. Rev. 60 (1), 1–20.
  28. Chiaradia, M., 2013. Copper enrichment in arc magmas controlled by overriding plate
  29. thickness. Nat. Geosci.
  30. Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R.,
  31. Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively
  32. coupled plasma mass spectrometry: an evaluation of isobaric interference corrections.
  33. J. Anal. Atomic Spectr. 17, 1567–1574.
  34. Cooke, D.R., Hollings, P.,Walshe, J.L., 2005. Giant porphyry deposits: characteristics, distribution,
  35. and tectonic controls. Econ. Geol. 100 (5), 801–818.
  36. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. Rev. Mineral.
  37. Geochem. 53 (1), 469–500.
  38. Dolgopolova, A., Seltmann, R., Konopelko, D., Biske, Y.S., Shatov, V., Armstrong, R.,
  39. Belousova, E., Pankhurst, R., Koneev, R., Divaev, F., 2016. Geodynamic evolution of
  40. the western Tien Shan, Uzbekistan: Insight from U-Pb SHRIMP geochronology and
  41. Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana Res.
  42. 10.1016/
  43. Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015. The architecture, chemistry, and evolution of
  44. continental magmatic Arcs. Ann. Rev. Earth Planet. 43, 299–331.
  45. Elburg, M.A., van Bergen, M., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I., Nasution, A.,
  46. 2002. Geochemical trends across an arc–continent collision zone: magma sources
  47. and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia.
  48. Geochimica et Cosmochimica Acta 66, 2771–2789.
  49. Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2006. Trace element and
  50. isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et
  51. Cosmochimica Acta 70, A158.
  52. Elliott, T., 2003. Tracers of the slab. In: Eiler, J. (Ed.), Inside the Subduction Factory American
  53. Geophysical Union Geophysical Monograph 138, pp. 23–45.
  54. Foster,M.D., 1960. Interpretation of the composition of trioctahedralmicas. U S Geological
  55. Survey Professional Paper 354 (B), 11–49.
  56. Gao, J., Long, L.L., Klemd, R., Qian, Q., Liu, D.Y., Xiong, X.M., Su, W., Liu,W.,Wang, Y.T., Yang,
  57. F.Q., 2009. Tectonic evolution of the south Tianshan orogeny and adjacent regions,
  58. NW China: Geochemical and age constraints of granitoid rocks. J. Earth Sci. 98 (6),
  59. 1221–1238.
  60. Ge, R.F., Zhu,W.B.,Wu, H.L., Zheng, B.H., Zhu, X.Q., He, J.W., 2012. The Paleozoic northern
  61. margin of the Tarim Craton: passive or active? Lithos 142-43, 1–15.Golovanov, I.M., Seltmann, R., Kremenetsky, A.A., 2005. The Porphyry Cu–Au/Mo Deposits
  62. of Central Euroasia: 2. The Almalyk (Kalmakyr–Dalnee) and Saukbulak Cu–Au
  63. Porphyra Systems, Uzbekistan. In: Porter, T.M. (Ed.), Super Porphyry Copper and
  64. Gold Deposits: A Global Perspective. Vol. 2. PGC Publishing, Adelaide, pp. 513–523.
  65. Hildreth,W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of
  66. Central Chile. Cont. Mineral. Petrol. 98, 455–489.
  67. Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic
  68. petrogenesis. Rev. Mineral. Geochem. 53 (1), 27–62.
  69. Hou, K.J., Li, Y.H., Zou, T.R., Qu, X.M., Shi, Y.R., Xie, G.Q., 2007. Laser ablation-MC-ICP-MS
  70. technique for Hf isotope microanalysis of zircon and its geological applications.
  71. Acta Petrologica Sinica 23, 2595–2604 (in Chinese with English abstract).
  72. Kay, S.M., Godoy, E., Kurz, A., 2005. Episodic arc migration, crustal thickening, subduction
  73. erosion, and magmatism in the south-Central Andes. Geol. Soc. Am. Bull. 117, 67–88.
  74. Kelemen, P.B., Hanghoj, K., Greene, A.R., 2014. One view of the geochemistry of subduction-
  75. resecondd magmatic arcs, with an emphasis on primitive andesite and lower
  76. crust. Treatise Geochem. 3, 593–659.
  77. Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M.,
  78. Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of
  79. granitic rocks from Hf-O isotopes in zircon. Science 315, 980–983.
  80. Konopelko, D., Seltmann, R., Mamadjanov, Y., Romer, R.L., Rojas-Agramonte, Y., Jeffries, T.,
  81. Fidaev, D., Niyozov, A., 2017. A geotraverse across two paleo-subduction zones in
  82. Tien Shan, Tajikistan. Gondwana Res. 47, 110–130.
  83. Koschek, G., 1993. Origin and significance of the SEM cathodoluminescence from zircon.
  84. J. Micros. 171, 223–232.
  85. Leake, B.E., Woolley, A.R., Arps, C.E.S., 1997. Nomenclature of amphiboles: Report of the
  86. Subcommittee on Amphiboles of the International Miner-alogical Association, Commission
  87. on New Mineral and Mineral Names. Am. Mineral. 82, 1019–1037.
  88. Li, C.F., Li, X.H., Li, Q.L., Guo, J.H., Li, J.H., Li, X.H., Yang, Y.H., 2012. Rapid and precise determination
  89. of Sr and Nd isotopic ratios in geological samples from the same filament
  90. loading by thermal ionization mass spectrometry employing a single-step separation
  91. scheme. Anal. Chim. Acta 727, 54–60.
  92. Liu, Y.S., Hu, Z.C., Gao, S., Gunther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ analysis of
  93. major and trace elements of anhydrous minerals by LA-ICP-MS without applying an
  94. internal standard. Chem. Geol. 257 (1–2), 34–43.
  95. Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and oceanic
  96. crust recycling-induced melt-peridotite interactions in the Trans-North China
  97. Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths.
  98. J. Petrol. 51 (1–2), 537–571.
  99. Long, X.P., Yuan, C., Sun, M., Zhao, G.C., Xiao, W.J., Wang, Y.J., Yang, Y.H., Hu, A.Q., 2010.
  100. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U-Pb
  101. and Hf isotopic constraints. Precambrian Res. 180, 272–284.
  102. Long, X.P., Yuan, C., Sun, M., Kröner, A., Zhao, G.C.,Wilde, S., Hu, A.Q., 2011. Reworking of
  103. the Tarim Craton by underplating of mantle plume-derived magmas: evidence from
  104. Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Res. 187,
  105. 1–14.
  106. Ludwig, K.R., 2003. User'smanual for Isoplot/Ex. Version 3.00: A Geochronological Toolkit
  107. for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 1–70.
  108. MacDonald, R., Hawkesworth, C.J., Heath, E., 2000. The Lesser Antilles volcanic chain: a
  109. study in arc magmatism. Earth Sci. Rev. 49, 1–76.
  110. Mao, J.W., Pirajno, F., Lehmann, B., Luo, M.C., Berzina, A., 2014. Distribution of porphyry
  111. deposits in the Eurasian continent and their corresponding tectonic settings.
  112. J. Asian Earth Sci. 79, 576–584.
  113. McBirney, A.R., Creaser, R.A., 2003. The Skaergaard layered series, part VII: Sr and Nd isotopes.
  114. J. Petrol. 44, 757–771.
  115. McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120,
  116. 2523–2553.
  117. Muir, R.J., Weaver, S.D., Bradshaw, J.D., Eby, G.N., Evans, J.A., 1995. The cretaceous Separation
  118. Point batholith, New Zealand: granitoid magmas formed by melting of mafic
  119. lithosphere. Geol. Soc. London 152, 689–701.
  120. Munteanu, M.,Wilson, A., Yao, Y., Harris, C., Chunnett, G., Luo, Y.N., 2010. The Tongde dioritic
  121. pluton (Sichuan, SWChina) and its geotectonic setting: regional implications of
  122. a local-scale study. Gondwana Res. 18, 455–465.
  123. Namur, O., Charlier, B., Toplis, M.J., Higgins, M.D., Liégeois, J.P., Vander Auwera, J., 2010.
  124. Crystallization sequence and magma chamber processes in the ferrobasaltic SeptIles
  125. layered intrusion, Canada. J. Petrol. 51, 1203–1236.
  126. Norrish, K., Chappell, B.W., 1997. X-ray fluorescence spectrometry. In: Zussman, J. (Ed.),
  127. Physical Methods in Determinative Mineralogy, 2nd edition Academic Press, New
  128. York, pp. 201–272.
  129. Ouyang, H.,Mao, J., Zhou, Z., Su, H., 2015. Late Mesozoic metallogeny and intracontinental
  130. magmatism, southern Great Xing'an Range, northeastern China. Gondwana Res. 27,
  131. 1153–1172.
  132. Patiño Douce, A.E., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite
  133. from 3 to 15 kbar. J. Petrol. 36, 707–738.
  134. Patiño Douce, A.E., 1997. Generation of metaluminous A-type granites by low-pressure
  135. melting of calc-alkaline granitoids. Geology 25, 743–746.
  136. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from
  137. the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58, 63–81.
  138. Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively
  139. coupled plasma mass spectrometry. Talanta 51, 507–513.
  140. Reich, Martin, Parada, M.A., Palacios, C., Dietrich, A., Schultz, F., Lehman, B., 2003. Adakitelike
  141. signature of late Miocene intrusions at the Los Pelambres giant porphyry copper
  142. deposit in the Andes of Central Chile-Metallogenic implications. Mineralium Deposita
  143. 38, 876–885.
  144. Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-au) deposit formation.
  145. Econ. Geol. 98, 1515–1533.
  146. Richards, J.P., 2011a. High Sr/Y arc magmas and porphyry Cu±Mo±au deposits: just add
  147. water. Econ. Geol. 106 (7), 1075–1081.
  148. Richards, J.P., 2011b. Magmatic to hydrothermal metal fluxes in convergent and collided
  149. margins. Ore Geol. Rev. 40, 1–26.
  150. Richards, J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications
  151. for metallogeny. Lithos 233, 27–45.
  152. Richards, J.P., Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable
  153. role in metallogenesis. Econ. Geol. 102, 537–576.
  154. Richards, J.P., Spell, T., Rameh, E., Razique, A., Fletcher, T., 2011. High Sr/Y magmas reflect
  155. arc maturity, highmagmatic water content, and porphyry Cu±Mo±au potential: examples
  156. from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ.
  157. Geol. 107, 295–332.
  158. Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and chemical equilibrium of amphibole
  159. in calc-alkaline magmas: an overview, new thermobarometric formulations and application
  160. to subduction-related volcanoes. Contr. Mineral. Petrol. 160 (1), 45–66.
  161. Rudnick, R.L., 1995. Making continental crust. Nature 378, 571–578.
  162. Rudnick, R.L., Gao, S., 2003. The composition of the continental crust. In: Rudnick, R.L.
  163. (Ed.), The Crust. Elsevier-Pergamon, Oxford, pp. 1–64.
  164. Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochem. Geophys.
  165. Geosyst.
  166. Seghedi, I., Downes, H., Pécskay, Z., Thirlwall, M.F., Szakács, A., Prychodko, M., Mattey, D.,
  167. 2001. Magmagenesis in a subduction-related post-collisional volcanic arc segment:
  168. the Ukrainian Carpathians. Lithos 57 (4), 237–262.
  169. Seltmann, R., Konopelko, D., Biske, G., Divaev, F., Sergeev, S., 2011. Hercynian post-collisional
  170. magmatism in the context of Paleozoic magmatic evolution of the Tien Shan
  171. orogenic belt. J. Asian Earth Sci. 42 (5), 821–838.
  172. Seltmann, R., Porter, T.M., Pirajno, F., 2014. Geodynamics and metallogeny of the central
  173. Eurasian Porphyry and related epithermal mineral systems: a Review. J. Asian Earth
  174. Sci. 79, 810–841.
  175. Shen, P., Hattori, K., Pan, H.d., Jackson, S., Seitmuratova, E., 2015. Oxidation condition and
  176. metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits
  177. in the Central Asian orogenic belt. Econ. Geol. 110 (7), 1861–1878.
  178. Sillitoe, R.H., 2010. Porphyry copper systems. Econ. Geol. 105, 3–41.
  179. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts:
  180. implications for mantle composition and process. In: Saunders, A.D., Norry, M.J.
  181. (Eds.), Magmatism in Ocean Basins. Vol. 42. Geological Society London Special Publications,
  182. pp. 313–345.
  183. Sun,W.D., Zhang, H., Ling, M.X., Ding, X., Chung, S.L., Zhou, J.B., Yang, X.Y., Fan,W.M., 2011.
  184. The genetic association of adakites and Cu–au ore deposits. Int. Geol. Rev. 53 (5–6),
  185. 691–703.
  186. Sun, W.D., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y.,
  187. Zartman, R.E., Ling, M.X., 2015. Porphyry deposits and oxidized magmas. Ore Geol.
  188. Rev. 65, 97–131.
  189. Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., 2007. Tectonic models for accretion
  190. of the Central Asian Orogenic Belt. J. Geol. Soc. London 164, 31–47.
  191. Wu, C., Chen, H.Y., Hollings, P., Xu, D., Liang, P., Han, J.S., Xiao, B., Cai, K.D., Liu, Z.J., Qi, Y.K.,
  192. 2015. Magmatic sequences in the Halasu Cu Belt, NWChina: Trigger for he Paleozoic
  193. porphyry Cu mineralization in the Chinese Altay-East Junggar. Ore Geol. Rev. 71,
  194. 373–404.
  195. Xiao,W.J., Santosh,M., 2014. Thewestern Central Asian Orogenic Belt: a window to accretionary
  196. orogenesis and continental growth. Gondwana Res. 25, 1429–1444.
  197. Xiao,W.J., Huang, B.C., Han, C.M., Sun, S., Li, J.L., 2010. A review of the western part of the
  198. Altaids: a key to understanding the architecture of accretionary orogens. Gondwana
  199. Res. 18, 253–273.
  200. Xiao, W.J., Windley, B.F., Allen, M., Han, C.M., 2013. Paleozoic multiple accretionary and
  201. collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 23,
  202. 1316–1341.
  203. Xue, C.J., Zhao, X.B., Mo, X.X., Chen, Y.C., Dong, L.H., Gu, X.X., Zhang, Z.C., Nurtaev, B., Pak,
  204. N., Li, Z.D.,Wang, X.L., Zhang, G.Z., Yaxiaer, Y., Feng, B., Zu, B., Liu, J.Y., 2014a. Tectonic-
  205. Metallogenic Evolution of Western Tianshan Giant Au-Cu-Zn-Pb Metallogenic Belt
  206. and Prospecting Orietation. Acta Geosci. Sinica 88 (12), 2490–2531 (in Chinese
  207. with Englisj abstract).
  208. Xue, C.J., Zhao, X.B.,Mo, X.X., Dong, L.H., Gu, X.X., Nurtaev, B., Pak, N., Zhang, Z.C.,Wang, X.
  209. L., Zu, B., Zhang, G.Z., Feng, B., Liu, J.Y., 2014b. Asian Gold Belt inwestern Tianshan and
  210. its dynamic setting, metallogenic control and exploration. Front. Earth Sci. 21 (5),
  211. 128–155.
  212. Yang, F.Q., Mao, J.W., Pirajno, F., Yan, S.H., Liu, G.R., Zhou, G., Zhang, Z.X., Liu, F., Geng, X.X.,
  213. Guo, C.L., 2012. A review of the geological characteristics and geodynamic setting of
  214. late Paleozoic porphyry copper deposits in the Junggar region, Xinjiang Uygur Autonomous
  215. Region, Northwest China. J. Asian Earth Sci. 49, 80–98.
  216. Yang, F.Q., Chai, F.M., Zhang, Z.X., Geng, X.X., Li, Q., 2014. Zircon U-Pb geochronology, geochemistry,
  217. and Sr-Nd-Hf isotopes of granitoids in the Yulekenhalasu copper ore district,
  218. northern Junggar, China: Petrogenesis and tectonic implications. Lithos 190-
  219. 191, 85–103.
  220. Zhao, Z.Y., Zhang, Z.C., Santosh, M., Huang, H., Cheng, Z.G., Ye, J.C., 2015. Early Paleozoic
  221. magmatic record from the northern margin of the Tarim Craton: further insights on
  222. the evolution of the Central Asian Orogenic Belt. Gondwana Res.
  223. 10.1016/ 007.
  224. Zhao, X.B., Xue, C.J., Chi, G.X.,Mo, X.X., Nurtaev, B., Zhang, G.Z., 2017. Zircon and molybdenite
  225. geochronology and geochemistry of the Kalmakyr porphyry Cu-au deposit,
  226. Almalyk district, Uzbekistan: Implications for mineralization processes. Ore Geol.
  227. Rev. 86, 807–824.
















Like and share on

Cite this publication

Copy text below and use in your article