Geological and Environmental Engineering | Article | Published 2017

Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu–Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes

Keywords: Late Carboniferous Porphyry Cu–Au–Mo mineralization Kalmakyr Turkestan Ocean Tien Shan


Copper, gold and molybdenum mineralization of the Kalmakyr porphyry deposit in Uzbek Tien Shan occurs as stockworks, veinlets and disseminations in the phyllic and K-silicate alteration zones developed predominantly in a middle to late Carboniferous intrusive complex composed of monzonite and granodiorite porphyry. Zircon U–Pb dating yielded an age of 327.2 ± 5.6 Ma for the ore-hosting monzonite and an age of 313.6 ± 2.8 Ma for the ore-bearing granodiorite porphyry. Re–Os dating of seven molybdenite samples from stockwork and veinlet ores yielded model ages from 313.2 to 306.3 Ma, with two wellconstrained isochron ages of 307.6 ± 2.5 Ma (five stockwork ores) and 309.1 ± 2.2 Ma (five stockwork ores and two veinlet ores), respectively. These results indicate that Cu–Au mineralization post-dated the emplacement of the monzonite, started right after the emplacement of the granodiorite porphyry, and lasted for ca. 7 Ma afterward. The geochronological and geochemical data suggest that the Kalmakyr deposit was formed in a late Carboniferous mature magmatic arc setting, probably related to the latest subduction process of the Turkestan Ocean beneath the Middle Tien Shan. The eHf(t) values of zircon grains from the monzonite vary from +11 to +1.7, with an average of +5.1, and those of zircon grains from the granodiorite porphyry range from +5.7 to 1.8, with an average of +2.4. These data indicate that the magma of both monzonite and granodiorite porphyry was derived from partial melting of a thickened lower crust with input of mantle components and variable crustal contamination, and that there was more mantle contribution to the formation of the monzonite than the granodiorite porphyry. The high rhenium concentrations of molybdenite (98–899 ppm) also indicate major mantle contribution of rhenium and by inference ore metals. The relatively high EuN/EuN ⁄ values (average 0.68), Ce4+/Ce3 values (average 890) and Ce/Nd values (average 36.8) for zircon grains from the granodiorite porphyry than those from the monzonite (average EuN/EuN ⁄ = 0.33, average Ce4+/Ce3 = 624, average Ce/Nd = 3.9) suggest that the magma for the syn-mineralization granodiorite porphyry has higher oxygen fugacity than that for the pre-mineralization monzonite. Based on these data, it is proposed that while the monzonite was emplaced, the oxygen fugacity and volatile contents in the magma were relatively low, and ore metals might disperse in the intrusive rock, whereas when the granodiorite porphyry was emplaced, the oxygen fugacity and volatile contents in the magma were increased, favoring copper and gold enrichment in the magmatic fluids. The Kalmakyr deposit formed from a long-lived magmatic-hydrothermal system connected with fertile magmatic sources in relation to the subduction of the Turkestan Ocean beneath the Middle Tien Shan.


  1. Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report
  2. 204Pb. Chem. Geol. 192, 59–79.
  3. Bakirov, A., Tagiri, M., Sakiev, K., Ivleva, E., 2003. The Lower Precambrian rocks in
  4. the Tien Shan and their geodynamic setting. Geotectonics 37, 368–380.
  5. Ballard, J.R., Palin, J.M., Campbell, I.H., 2002. Relative oxidation states of magmas
  6. inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits
  7. of northern Chile. Contrib. Miner. Petrol. 144, 347–364.
  8. Belousova, E., Griffin, W.L., O’reilly, S.Y., Fisher, N., 2002. Igneous zircon: trace
  9. element composition as an indicator of source rock type. Contrib. Miner. Petrol.
  10. 143, 602–622.
  11. Biske, Y.S., Seltmann, R., 2010. Paleozoic Tian-Shan as a transitional region between
  12. the Rheic and Urals-Turkestan oceans. Gondwana Res. 17, 602–613.
  13. Biske, Y.S., Konopelko, D.L., Seltmann, R., 2013. Geodynamics of late Paleozoic
  14. magmatism in the Tien Shan and its framework. Geotectonics 47, 291–309.
  15. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites
  16. and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148 (1–2),
  17. 243–258.
  18. Burnham, A.D., Berry, A.J., 2012. An experimental study of trace element
  19. partitioning between zircon andmelt as a function of oxygen fugacity.
  20. Geochim. Cosmochim. Acta 95, 196–212.
  21. Chelle-Michou, C., Chiaradia, M., Ovtcharova, M., Ulianov, A., Wotzlaw, J.F., 2014.
  22. Zircon petrochronology reveals the temporal link between porphyry systems
  23. and the magmatic evolution of their hidden plutonic roots (the Eocene
  24. Coroccohuayco deposit, Peru). Lithos 198, 129–140.
  25. Chernyshev, I.V., Kovalenker, V.A., Goltsman, Y.V., Plotinskaya, O.Y., Bairova, E.D.,
  26. Oleinikova, T.I., 2011. Rb-Sr isochron dating of Late Paleozoic epithermal oreforming
  27. processes: a case study of the Kairagach gold deposit, Kurama ore
  28. district, Central Tien Shan. Geochem. Int. 49, 107–119.
  29. Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.F., Ovtcharova, M., 2013. How
  30. accurately can we date the duration of magmatic-hydrothermal events in
  31. porphyry systems? An invited paper. Econ. Geol. 108, 565–584.Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A.,
  32. German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multicollector
  33. inductively coupled plasma mass spectrometry: an evaluation of
  34. isobaric interference corrections. J. Anal. At. Spectrom. 17, 1567–1574.
  35. Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant porphyry deposits: characteristics,
  36. distribution, and tectonic controls. Econ. Geol. 100, 801–818.
  37. De Bievre, P., Taylor, P., 1993. Table of the isotopic compositions of the elements.
  38. Int. J. Mass Spectrom. Ion Processes 123, 149–166.
  39. Dolgopolova, A., Seltmann, R., Konopelko, D., Biske, Yu.S., Shatov, V., Armstrong, R.,
  40. Belousova, E., Pankhurst, R., Koneev, R., Divaev, F., 2016. Geodynamic evolution
  41. of the western Tien Shan, Uzbekistan: insights from U-Pb SHRIMP
  42. geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana
  43. Res.
  44. Du, A., Wu, S., Sun, D., Wang, S., Qu, W., Markey, R., Stain, H., Morgan, J., Malinovskiy,
  45. D., 2004. Preparation and certification of Re-Os dating reference materials:
  46. molybdenites HLP and JDC. Geostand. Geoanal. Res. 28, 41–52.
  47. Elhlou, S., Belousova, E., Griffin, W., Pearson, N., O’reilly, S., 2006. Trace element and
  48. isotopic composition of GJ-red zircon standard by laser ablation. Geochim.
  49. Cosmochim. Acta 70, A158.
  50. Golovanov, I.M., Seltmann, R., Kremenetsky, A.A., 2005. The porphyry Cu–Au/Mo
  51. deposits of Central Euroasia: 2. The Almalyk (Kalmakyr–Dalnee) and Saukbulak
  52. Cu–Au porphyra systems, Uzbekistan. In: Porter, T.M. (Ed.), Super Porphyry
  53. Copper and Gold Deposits: A Global Perspective, vol. 2. PGC Publishing,
  54. Adelaide, pp. 513–523.
  55. Goolaerts, A., Mattielli, N., de Jong, J., Weis, D., Scoates, J.S., 2004. Hf and Lu isotopic
  56. reference values for the zircon standard 91500 by MC-ICP-MS. Chem. Geol. 206,
  57. 1–9.
  58. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O’Reilly,
  59. S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MCICPMS
  60. analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta
  61. 64 (1), 133–147.
  62. Griffin, W., Wang, X., Jackson, S., Pearson, N., O’Reilly, S.Y., Xu, X., Zhou, X., 2002.
  63. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes,
  64. Tonglu and Pingtan igneous complexes. Lithos 61, 237–269.
  65. Han, B.F., He, G.Q., Wang, X.C., Guo, Z.J., 2011. Late Carboniferous collision between
  66. the Tarim and Kazakhstan-Yili terranes in the western segment of the South
  67. Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang,
  68. western China. Earth Sci. Rev. 109, 74–93.
  69. Hoskin, P.W., Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use
  70. as a provenance indicator. Geology 28, 627–630.
  71. Hoskin, P.W., Schaltegger, U., 2003. The composition of zircon and igneous and
  72. metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27–62.
  73. Jahn, B.M., Wu, F., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and
  74. continental growth in the Phanerozoic. Geol. Soc. Am. Spec. Pap. 350,
  75. 181–193.
  76. Jugo, P.J., 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology 37,
  77. 415–418.
  78. Kinny, P.D., Maas, R., 2003. Lu–Hf and Sm–Nd isotope systems in zircon. Rev.
  79. Mineral. Geochem. 53, 327–341.
  80. Konopelko, D., Biske, G., Seltmann, R., Eklund, O., Belyatsky, B., 2007. Hercynian
  81. post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan,
  82. Kyrgyzstan. Lithos 97, 140–160.
  83. Konopelko, D., Biske, G., Seltmann, R., Kiseleva, M., Matukov, D., Sergeev, S., 2008.
  84. Deciphering Caledonian events: timing and geochemistry of the Caledonian
  85. magmatic arc in the Kyrgyz Tien Shan. J. Asian Earth Sci. 32, 131–141.
  86. Konopelko, D., Seltmann, R., Biske, G., Lepekhina, E., Sergeev, S., 2009. Possible
  87. source dichotomy of contemporaneous post-collisional barren I-type versus tinbearing
  88. A-type granites, lying on opposite sides of the South Tien Shan suture.
  89. Ore Geol. Rev. 35, 206–216.
  90. Konopelko, D., Kullerud, K., Apayarov, F., Sakiev, K., Baruleva, O., Ravna, E.,
  91. Lepekhina, E., 2012. SHRIMP zircon chronology of HP-UHP rocks of the
  92. Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan.
  93. Gondwana Res. 22, 300–309.
  94. Lee, J.K., Williams, I.S., Ellis, D.J., 1997. Pb, U and Th diffusion in natural zircon.
  95. Nature 390, 159–162.
  96. Lee, C.T.A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Le Roux, V.,
  97. Yin, Q.-Z., Jin, D., 2012. Copper systematics in arc magmas and implications for
  98. crust-mantle differentiation. Science 336, 64–68.
  99. Lomize, M., Demina, L., Zarshchikov, A., 1997. The Kyrgyz-Terskei Paleoceanic Basin,
  100. Tien Shan. Geotectonics 31, 463–482.
  101. Ludwig, K.R., 2003. User’s manual for Isoplot 3.00: a geochronological toolkit for
  102. Microsoft Excel. Kenneth R. Ludwig.
  103. Mao, J., Zhang, Z., Zhang, Z., Du, A., 1999. Re–Os isotopic dating of molybdenites in
  104. the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its
  105. geological significance. Geochim. Cosmochim. Acta 63, 1815–1818.
  106. Mao, J., Pirajno, F., Lehmann, B., Luo, M., Berzina, A., 2014. Distribution of porphyry
  107. deposits in the Eurasian continent and their corresponding tectonic settings. J.
  108. Asian Earth Sci. 79, 576–584.
  109. Mathur, R., Ruiz, J., Titley, S., Gibbins, S., Margotomo, W., 2000. Different crustal
  110. sources for Au-rich and Au-poor ores of the Grasberg Cu–Au porphyry deposit.
  111. Earth Planet. Sci. Lett. 183, 7–14.
  112. Meshchaninov, Y.Z., Azin, V.N., 1973. Distribution of gold in a copper porphyry
  113. deposit, Almalyk region. Int. Geol. Rev. 6, 660–663.
  114. Pašava, J., Vymazalová, A., Košler, J., Koneev, R.I., Jukov, A.V., Khalmatov, R.A., 2010.
  115. Platinum-group elements in ores from the Kalmakyr porphyry Cu–Au–Mo
  116. deposit, Uzbekistan: bulk geochemical and laser ablation ICP-MS data. Miner.
  117. Deposita 45, 411–418.
  118. Peytcheva, I., von Quadt, A., Neubauer, F., Frank, M., Nedialkov, R., Heinrich, C.,
  119. Strashimirov, S., 2009. U-Pb dating, Hf-isotope characteristics and trace-REEpatterns
  120. of zircons from Medet porphyry copper deposit, Bulgaria: implications
  121. for timing, duration and sources of ore-bearing magmatism. Mineral. Petrol. 96,
  122. 19–41.
  123. Porter, T.M., 2006. The Tien Shan Belt: Golden Heart of Central Asia. Gangue 88.
  124. Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and
  125. the link between U-Pb ages and metamorphism. Chem. Geol. 184, 123–138.
  126. Samonov, I.Z., Pozharisky, I.F., 1977. Deposits of copper. In: Smirnov, V.I. (Ed.), Ore
  127. Deposits of the USSR, vol. 2. Pitman Publishing, pp. 106–181.
  128. Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock.
  129. Science 293, 683–687.
  130. Seltmann, R., Porter, T.M., 2005. The porphyry Cu-Au/Mo deposits of central
  131. Eurasia: tectonic, geologic, and metallogenic setting and significant deposits. In:
  132. Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits: A Global
  133. Perspective, vol. 2. PGC Publishing, Adelaide, pp. 467–512.
  134. Seltmann, R., Konopelko, D., Biske, G., Divaev, F., Sergeev, S., 2011. Hercynian postcollisional
  135. magmatism in the context of Paleozoic magmatic evolution of the
  136. Tien Shan orogenic belt. J. Asian Earth Sci. 42, 821–838.
  137. Seltmann, R., Porter, T.M., Pirajno, F., 2014a. Geodynamics and metallogeny of the
  138. central Eurasian porphyry and related epithermal mineral systems: a review. J.
  139. Asian Earth Sci. 79, 810–841.
  140. Seltmann, R., Koneev, R., Divaev, F.K., Khalmatov, R.A., 2014b. New data on the
  141. absolute age of magmatism and gold mineralization in Uzbekistan. Geol. Miner.
  142. Res. 2, 10–15 (In Russian).
  143. Sengör, A., Natal’In, B., Burtman, V., 1993. Evolution of the Altaid tectonic collage
  144. and Palaeozoic crustal growth in Eurasia. Nature 364, 299–307.
  145. Shayakubov, T., Islamov, F., Golovanov, I., Kashirsky, S., Kremenetsky, A., Minzer, E.,
  146. 1999. Almalyk and Saukbulak Ore fields. In: Shayakubov, T., Islamov, F.,
  147. Kremenetsky, A., Seltmann, R. (Eds.), Au, Ag, and Cu Deposits of Uzbekistan.
  148. Excursion Guidebook, IGCP 373 Publication No 11. GeoForschungsZentrum
  149. Potsdam, pp. 75–90.
  150. Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re–Os ages of group IIA, IIIA, IVA, and
  151. IVB iron meteorites. Science 271, 1099–1102.
  152. Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176 Lu decay
  153. constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian
  154. mafic intrusions. Earth Planet. Sci. Lett. 219 (3), 311–324.
  155. Sokolov, A.L., 1995. The regional and local controls on giant-scale copper and gold
  156. mineralisation, Uzbekistan. In: Clark, A.H. (Ed.), Giant Ore Deposits II. Controls
  157. on the Scale of Orogenic Magmatic-Hydrothermal Mineralisation. Proceedings
  158. of the Second Giant Ore Deposits Workshop, Kingston, Ontario, Canada, April
  159. 25-27, 1995. Department of Geological Sciences, Queens University, Kingston
  160. Ontario, pp. 450–474.
  161. Stein, H., Markey, R., Morgan, J., Hannah, J., Scherstén, A., 2001. The remarkable Re–
  162. Os chronometer in molybdenite: how and why it works. Terra Nova 13, 479–
  163. 486.
  164. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
  165. basalts: implications for mantle composition and processes. Geol. Soc., London,
  166. Spec. Publ. 42, 313–345.
  167. Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, L.L.,
  168. Ireland, T.R., Wei, Q.R., Fan, W.M., 2013. The link between reduced porphyry
  169. copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 103, 263–
  170. 275.
  171. Sun, W.D., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.
  172. Y., Zartman, R.E., Ling, M.X., 2015. Porphyry deposits and oxidized magmas. Ore
  173. Geol. Rev. 65, 97–131.
  174. Trail, D., Watson, E.B., Tailby, N.D., 2011. The oxidation state of Hadean magmas and
  175. implications for early Earth’s atmosphere. Nature 480, 79–82.
  176. Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as
  177. proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97,
  178. 70–87.
  179. Turamuratov, I.B., Isokov, M.U., Hodjaev, N.T., Abduazimova, Z.M., Zimalina, V.Y.,
  180. Tsoy, V.D., Krikunova, L.M., Vasilevskiy, B.B., Djuraev, A.D., Piyanovskiy, G.V.,
  181. Michailov, V.V., Divaev, F.K., 2011. Atlas of Ore Deposits Models of Uzbekistan.
  182. State Committee of Republic of Uzbekistan on Geology and Mineral Resources,
  183. Scientific Research Institute of Mineral Resources, Tashkent, pp. 1–100.
  184. Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., 2007. Tectonic models
  185. for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 164, 31–47.
  186. Xiao, W., Windley, B.F., Allen, M.B., Han, C., 2013. Paleozoic multiple accretionary
  187. and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana
  188. Res. 23, 1316–1341.
  189. Xue, C.J., Duan, S.G., Chai, F.M., 2013. Maimaiti. M., Tuleshiabekov A.X., and Qu W.J.,
  190. Metallogenetic epoch of the Almalyk porphyry copper ore field, Uzbekistan, and
  191. its geological significance. Earth Sci. Front. 20 (2), 197–204 (in Chinese with
  192. English abstract).
  193. Xue, C.J., Zhao, X.B., Mo, X.X., Dong, L.H., Gu, X.X., Nurtaev, B., Pak, N., Zhang, Z.C.,
  194. Wang, X.L., Zu, B., Zhang, G.Z., Feng, B., Liu, J.Y., 2014. Asian Gold Belt in western
  195. Tianshan and its dynamic setting, metallogenic control and exploration. Earth
  196. Sci. Front. 21 (5), 128–155 (in Chinese with English abstract).
  197. Yakubchuk, A., Cole, A., Seltmann, R., Shatov, V., 2002. Tectonic setting,
  198. characteristics, and regional exploration criteria for gold mineralization in the
  199. Altaid orogenic collage: the Tien Shan province as a key example. Soc. Econ.
  200. Geol. – Spec. Publ. 9, 177–202.
















Like and share on

Cite this publication

Copy text below and use in your article