Geological and Environmental Engineering | Article | Published 2021-01-28

Platinum group elements in gabbroic intrusions from the Valerianov-Beltau-Kurama arc: Implications for genesis of the Kalmakyr porphyry Cu–Au deposit

Publisher: Wiley
Collection: Geological Journal
Keywords: Cu–Au porphyry deposit, fractional crystallization, gabbro, platinum-group elements, sulphide separation


Porphyry Cu–Au ores areamong the important types of porphyry deposits. Some of these are enriched in Pd and Pt, which in some cases have economic potential for PGE (platinum group element) recovery. The behaviour of PGE and S-saturation in mafic intrusions associated with porphyry deposits are, however, poorly constrained. Here we investigate the PGE concentrations of gabbroic intrusions from Akcha, Beleuti, and Kalmakyr in the Almalyk porphyry Cu–Au ore field in Uzbekistan through Ni–S analyses employing fire assay-isotope dilution method. The results reveal extremely high Pd/Ir ratio and a negative Ru anomaly for the Beleuti and Akcha gabbro which we attribute to fractional crystallization of olivine and Ru–Os–Ir alloys. The extremely high Cu/Pd ratio (2.56 × 105–2.98 × 106) and depleted PGE contents of the Kalmakyr gabbro possibly represent immiscible separation of sulphide. During the emplacement of the parental magma of Kalmakyr gabbro, crustal contamination might have resulted in S-saturation and sulphide segregation. Sulphide-bearing crust was remobilized during the increasing maturity of the island and long-lived arc magmatism, which released the sulphide into the hydrothermal system of the porphyry deposit. We propose that this process favoured the enrichment of Pt–Pd and sulphide in the Kalmakyr porphyry Cu–Au deposit.


  1. Alard, O., Griffin, W. L., & Lorand, J. P. (2000). Non-chondritic distribution
  2. of the highly siderophile elements in mantle sulphides. Nature, 407,
  3. 891–894.
  4. Alexeiev, D. V., Kröner, A., Hegner, E., Rojas-Agramonte, Y., Biske, Y. S.,
  5. Wong, J., … Liu, D. (2016).Middle to Late Ordovician arc system in the Kyrgyz
  6. Middle Tianshan: From arc-continent collision to subsequent evolution
  7. of a Palaeozoic continental margin. Gondwana Research, 39, 261–291.petrogenesis. Journal of Geophysical Research: Solid Earth, 102(B1),
  8. 853–874.
  9. Konopelko, D., Seltmann, R., Mamadjanov, Y., Romer, R. L., Rojas-
  10. Agramonte, Y., Jeffries, T., … Niyozov, A. (2017). A geotraverse across
  11. two palaeo-subduction zones in Tien Shan, Tajikistan. Gondwana
  12. Research, 47, 110–130.
  13. Li, C., Naldrett, A. J., & Ripley, E. M. (2001). Critical factors for the formation
  14. of a nickel–copper deposit in an evolved magma system: Lessons
  15. from a comparison of the pants lake and Voisey's bay sulfide occurrences
  16. in Labrador, Canada. Mineralium Deposita, 36(1), 85–92.
  17. Li, J. X., Qin, K. Z., Li, G. M., Xiao, B., Chen, L., & Zhao, J. X. (2011). Postcollisional
  18. ore-bearing adakitic porphyries from Gangdese porphyry
  19. copper belt, southern Tibet: Melting of thickened juvenile arc lower
  20. crust. Lithos, 126(3), 265–277.
  21. Lightfoot, P. C., & Keays, R. R. (2005). Siderophile and chalcophile metal
  22. variations in flood basalts from the Siberian Trap, Noril'sk Region:
  23. implications for the Origin of the Ni–Cu–PGE Sulfide Ores. Economic
  24. Geology, 100, 439–462.
  25. Long, X. P., Yuan, C., Sun, M., Kröner, A., Zhao, G. C., Wilde, S., & Hu, A. Q.
  26. (2011). Reworking of the Tarim Craton by underplating of mantle
  27. plume-derived magmas: Evidence from Neoproterozoic granitoids in
  28. the Kuluketage area, NW China. Precambrian Research, 187, 1–14.
  29. Loury, C., Rolland, Y., Cenki-Tok, B., Lanari, P., & Guillot, S. (2016). Late
  30. Palaeozoic evolution of the South Tien Shan: Insights from P–T estimates
  31. and allanite geochronology on retrogressed eclogites (Chatkal
  32. range, Kyrgyzstan). Journal of Geodynamics, 96, 62–80.
  33. Lowczak, J. N., Campbell, I. H., Cocker, H., Park, J. W., & Cooke, D. R.
  34. (2018). Platinum group element geochemistry of the forest reef volcanics,
  35. southeastern Australia: Implications for porphyry Au–Cu
  36. mineralisation. Geochimica et Cosmochimica Acta, 220, 385–406.
  37. Lv, C. F., He, H. L., Zhou, Z. R., Zhi, X. X., Li, B., & Zhang, Q. (2002). Determination
  38. of platinum group elements and gold in geochemical exploration
  39. samples by nickel sulfide fire assay-ICPMS II, reduction of reagent
  40. blank. Rock and Mineral Analysis, 21(1), 7–11 (in Chinese with English
  41. abstract).
  42. Mao, J. W., Pirajno, F., Lehmann, B., Luo, M. C., & Berzina, A. (2014). Distribution
  43. of porphyry deposits in the Eurasian continent and their
  44. corresponding tectonic settings. Journal of Asian Earth Sciences, 79,
  45. 576–584.
  46. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth.
  47. Chemical Geology, 120(3–4), 223–253.
  48. Merkle, R. K. W. (1998). Proportions of magmatic platinum-group minerals
  49. and evolution of mineralizing processes, UG-1 chromitite layer, Bushveld
  50. Complex. In N. P. Laverov & V. V. Distler (Eds.), International platinum
  51. (pp. 43–53). St Petersburg: Theophrastos Publications,
  52. Theophrastus.
  53. Momme, P., Tegner, C., Brooks, C. K., & Keays, R. R. (2002). The behaviour
  54. of platinum-group elements in basalts from the East Greenland rifted
  55. margin. Contributions to Mineralogy and Petrology, 143, 133–153.
  56. Mungall, J. E., & Brenan, J. M. (2014). Partitioning of platinum-group elements
  57. and Au between sulfide liquid and basalt and the origins of
  58. mantle-crust fractionation of the chalcophile elements. Geochimica et
  59. Cosmochimica Acta, 125, 265–289.
  60. Nakagawa, M., & Franco, H. E. A. (1997). Placer Os–Ir–Ru alloys and sulfides;
  61. indicators of sulfur fugacity in an ophiolite? Canadian Mineralogist,
  62. 35, 1441–1452.
  63. Naldrett, A. J. (1999). World-class Ni–Cu–PGE deposits: Key factors in
  64. their genesis. Mineralium Deposita, 34(3), 227–240.
  65. Naldrett, A. J., & Duke, J. M. (1980). Platinum metals magmatic sulfide
  66. ores. Science, 208, 1417–1424.
  67. Namur, O., Charlier, B., Toplis, M. J., Higgins, M. D., Liégeois, J. P., &
  68. Vander Auwera, J. (2010). Crystallization sequence and magma chamber
  69. processes in the ferrobasaltic SeptIles layered intrusion, Canada.
  70. Journal of Petrology, 51, 1203–1236.
  71. Ouyang, H., Mao, J., Zhou, Z., & Su, H. (2015). Late Mesozoic metallogeny
  72. and intracontinental magmatism, southern Great Xing'an Range, northeastern
  73. China. Gondwana Research, 27, 1153–1172.
  74. Park, J. W., Campbell, I. H., & Arculus, R. J. (2013). Platinumalloy and sulfur
  75. saturation in an arc-related basalt to rhyolite suite: Evidence from the
  76. Pual Ridge lavas, the Eastern Manus Basin. Geochimica et
  77. Cosmochimica Acta, 101, 76–95.
  78. Park, J. W., Campbell, I. H., & Kim, J. (2016). Abundances of platinum
  79. group elements in native sulfur condensates from the Niuatahi-
  80. Motutahi submarine volcano, Tonga rear arc: Implications for PGE
  81. mineralization in porphyry deposits. Geochimica et Cosmochimica Acta,
  82. 174, 236–246.
  83. Park, J. W., Campbell, I. H., Kim, J., & Moon, J. W. (2015). The role of late
  84. sulfide saturation in the formation of a Cu- and Au-rich magma:
  85. insights from the platinum group element geochemistry of Niuatahi–
  86. Motutahi lavas, Tonga rear arc. Journal of Petrology, 56(1), 59–81.
  87. Pašava, J., Vymazalová, A., Košler, J., Koneev, R. I., Jukov, A. V., &
  88. Khalmatov, R. A. (2010). Platinum-group elements in ores from the
  89. Kalmakyr porphyry Cu–Au–Mo deposit, Uzbekistan: Bulk geochemical
  90. and laser ablation ICP-MS data. Mineralium Deposita, 45(5), 411–418.
  91. Peck, D. C., & Keays, R. R. (1990). Geology, geochemistry, and origin of
  92. platinum-group element-chromitite occurrences in the Heazlewood
  93. River Complex, Tasmania. Economic Geology, 85, 765–793.
  94. Peck, D. C., Keays, R. R., & Ford, R. J. (1992). Direct crystallization of refractory
  95. platinum-group element alloys from boninitic magmas: Evidence
  96. from western Tasmania. Australian Journal of Earth Sciences, 39, 373–387.
  97. Philipp, H., Eckhardt, J. D., & Puchelt, H. (2001). Platinum-group element
  98. in basalts of the seaward-dipping reflector sequence, SE Greenland
  99. coast. Australian Journal of Earth Sciences, 42, 407–432.
  100. Qi, L., & Zhou, M. (2008). Platinum-group elemental and Sr–Nd–Os isotopic
  101. geochemistry of PermianEmeishan flood basalts in Guizhou province,
  102. SW China. Chemical Geology, 70(18), A511–A511.
  103. Reich, M., Parada, M. A., Palacios, C., Dietrich, A., Schultz, F., & Lehman, B.
  104. (2003). Adakite-like signature of Late Miocene intrusions at the Los
  105. Pelambres giant porphyry copper deposit in the Andes of Central Chile
  106. Metallogenic implications. Mineralium Deposita, 38, 876–885.
  107. Richards, J. P. (2003). Tectono-magmatic precursors for porphyry Cu-(Mo-
  108. Au) deposit formation. Economic Geology, 98, 1515–1533.
  109. Richards, J. P. (2011). High Sr/Y arc magmas and porphyry Cu±Mo±Au
  110. deposits: just add water. Economic Geology, 106(7), 1075–1081.
  111. Seltmann, R., Konopelko, D., Biske, G., Divaev, F., & Sergeev, S. (2011).
  112. Hercynian post-collisional magmatism in the context of Palaeozoic
  113. magmatic evolution of the Tien Shan orogenic belt. Journal of Asian
  114. Earth Sciences, 42(5), 821–838.
  115. Seltmann, R., Porter, T. M., & Pirajno, F. (2014). Geodynamics and metallogeny
  116. of the central Eurasian Porphyry and related epithermal mineral
  117. systems: A review. Journal of Asian Earth Sciences, 79, 810–841.
  118. Shima, H., & Naldrett, A. J. (1975). Solubility of sulfur in an ultramafic melt
  119. and the relevance of the system Fe-S-O. Economic Geology, 70(5),
  120. 960–967.
  121. Sillitoe, R. H. (1972). A plate tectonic model for the origin of porphyry copper
  122. deposits. Economic Geology, 67, 184–197.
  123. Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology,
  124. 105, 3–41.
  125. Snow, J. E., Schmidt, G., & Rampone, E. (2000). Os isotopes and highly
  126. siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth &
  127. Planetary Science Letters, 175(1–2), 119–132.
  128. Song, X. Y., Keays, R. R., Xiao, L., Qi, H. W., & Ihlenfeld, C. (2009). Platinum-
  129. group element geochemistry of the continental flood basalts in
  130. the central Emeisihan large igneous province, SW China. Chemical
  131. Geology, 262(3–4), 246–261.
  132. Stockman, H. W. (1984). Electron-microprobe characterization of minute
  133. platinum-group mineral inclusion-limits on accuracy. Scanning Electron
  134. Microscopy, (Part 3), 1097–1109.
  135. LIU ET AL. 13
  136. Sun, W. D., Huang, R. F., Li, H., Hu, Y. B., Zhang, C. C., Sun, S. J., …
  137. Ling, M. X. (2015). Porphyry deposits and oxidized magmas. Ore Geology
  138. Reviews, 65, 97–131.
  139. Tarkian, M., & Stribrny, B. (1999). Platinum-group elements in porphyry
  140. copper deposits: A reconnaissance study. Mineralogy and Petrology, 65,
  141. 161–183.
  142. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition
  143. and evolution, (1–312). London, UK: Blackwell Scientific.
  144. Turamuratov, I. B., Isokov, M. U., Hodjaev, N. T., Abduazimova, Z. M.,
  145. Zimalina, V. Y., Tsoy, V. D., … Divaev, F. K. (2011). Atlas of ore deposits
  146. models of Uzbekistan (pp. 1–100). Tashkent, Uzbekistan: State Committee
  147. of Republic of Uzbekistan on Geology and Mineral Resources, Scientific
  148. Research Institute of Mineral Resources.
  149. Ulrich, T., Golding, S., Kamber, B., Zaw, K., & Taube, A. (2003). Different
  150. mineralization styles in a volcanic-hosted ore deposit: The fluid and
  151. isotopic signatures of the Mt Morganau–Cu deposit, Australia. Ore
  152. Geology Reviews, 22(1), 61–90.
  153. Vaillant, M. L., Barnes, S. J., & Fiorentini, M. L. (2016). Effects of hydrous
  154. alteration on the distribution of base metals and platinum group elements
  155. within the Kevitsa magmatic nickel sulphide deposit. Ore Geology
  156. Reviews, 72(1), 128–148.
  157. Vogel, D. C., & Keays, R. R. (1997). The petrogenesis and platinum-group
  158. element geochemistry of the Newer Volcanic Province, Victoria,
  159. Australia. Chemical Geology, 136, 181–204.
  160. Walter, M. J. (1998). Melting of garnet peridotite and the origin of
  161. komatiite and depleted lithosphere. Journal of Petrology, 39(1), 29–60.
  162. Williams-Jones, A. E., & Heinrich, C. A. (2005). 100th Anniversary special
  163. paper: Vapor transport of metals and the formation of magmatichydrothermal
  164. ore deposits. Economic Geology, 100, 1287–1312.
  165. Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A., & Badarch, G. (2007).
  166. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal
  167. Geology Social London, 164, 31–47.
  168. Wood, S. A., Mountain, B. W., & Pan, P. (1992). The aqueous geochemistry
  169. of platinum, palladium and gold: recent experimental constraints and a
  170. re-evaluation of theoretical predictions. Canadian Mineralogist, 30,
  171. 955–982.
  172. Xiao, W. J., Huang, B. C., Han, C. M., Sun, S., & Li, J. L. (2010). A review of
  173. the western part of the Altaids: A key to understanding the architecture
  174. of accretionary orogens. Gondwana Research, 18, 253–273.
  175. Xiao, W. J., & Santosh, M. (2014). The western Central Asian Orogenic
  176. Belt: A window to accretionary orogenesis and continental growth.
  177. Gondwana Research, 25, 1429–1444.
  178. Xiao, W. J., Sun, M., & Santosh, M. (2015). Continental reconstruction and
  179. metallogeny of the Circum-Junggar areas and termination of the
  180. southern Central Asian Orogenic Belt. Geoscience Frontiers, 6,
















Like and share on

Cite this publication

Copy text below and use in your article