Physical and Mathematical Sciences | Article | Published 2022

The problem of describing the generators of a differential field of invariant differential rational functions with respect to the action of the group of real representations of symplectic transformations in a quaternion space

Collection: Bulletin of the Institute of Mathematics
Keywords: A group of real representations; invariant polynomial; invariant rational function; differential ring; differential field

Abstract

Настоящая статья посвящена решению задачи об описание образующие дифференциального поля инвариантных дифференциальных рациональных функций относительно действия группы вещественных представлений симплектических преобразований n−мерного кватернионного пространства и определеную соотношения между ними.

References

  1. 1. Vinberg E. B., Popov V. L. Theory of invariants. Sovremn. Probl. Matem. Fundam. Napravl 55, 1998, pp.137-309. [in Russian]
  2. 2. Diendone J. A., Carrell J. B. Invariant theory. Academik Press. 1971.
  3. 3. Nagata M. On the fourteen problem of Hilbert. Lectures in Tata institute of Fundamental Research. Bombey. 1963.
  4. 4. Mamford D., Forgaty J. Geometric invariant theory. Berlin: springer-Verlag.1982.
  5. 5. Gilbert D. Selected works. Volume 1 Theory of invariants. Theory of numbers. Algebra. Geometry. Fundamentals of mathematics. M. Faktorial. 1998. [in Russian]
  6. 6. Weyl H. The classical groups. Their invariants and representation. Princeton. Univ. Press. 1997.
  7. 7. Xadjiyev Dj. Application of the theory of invariants to the differential geometry of curves. Tashkent: Fan, 1988. [in Russian]
  8. 8. Muminov K. K. Equivalence of paths with respect to the action of a symplectic group.Izv. Vyssh. Uchebn. Zaved. Mat 7, 2002. pp 27-38. [in Russian]
  9. 9. Muminov K. K., Chilin. V. .I. Equivalence of curves in finite-dimensional spaces. Lambert Academic Publishing. Deutchland 2015. [in Russian]
  10. 10. Aripov R. G. Generators of the differential field of invariant differential rational path functions for the action of real orthogonal groups in Cn.Uzbek mathematical journal, 1, 1992, pp.3-7.[in Russian]
  11. 11. Khadjiyev Dj., Oren I., Peksen O. Generating systems of differential invariants and the theorem on extense for curves in the pseudo-Euclidean geometry.Turkish Journal of Mathematics, 37, 2013, pp.80-94.
  12. 12. Khadjiyev Dj. Complete systems of differential invariants of vector fields in a euclidean space.Turkish Journal of Mathematics, 34, 2010, pp.543-559.
  13. 13. Chilin. V. I., Muminov K. K. Equivalence of paths in Galilean geometry.Journal of Mathematical Sciences 245(3), 2020, pp. 297-309.
  14. 14. Muminov K. K., Gafforov R. A. Generators of the differential field of invariant rational functions of a finite number of paths under the action of a special pseudo orthogonal group. Reports of the Academy of Sciences of the Republic of Uzbekistan. 11, 2011, b.12-13. [in Russian]
  15. 15. Muminov K. K., Chilin. V. .I. A transcendence basis in the differential field of invariants of pseudo-Galilean group. Russian Mathematics.(Iz. Vuz), 63(3), 2019, pp 15-24.
  16. 16. Iwahori N Some remarks on tensor invariants of O(n), U(n), Sp(n). Journal of the Mathematical Society of Japan, 10(2), 1958. pp. 145-160
  17. 17. Bernig A. Invariant valuations on quaternionic vector spaces. arxiv:1005.3654v1.[math.DC.], 20 may, 2010 Mat, 2, 2002, pp. 27-38.
  18. 18. Chevalley.C Iheory of Lie groups. i. Princeton., Princeton University Press. 1946.
  19. 19. Kostrikin A. I., Manin Yu. I. Linear algebra and geometry. Moscow: Nauka, 1986. [in Russian]
  20. 20. Naymark M. A. Group representation theory. Moscow: Nauka, 1976. [in Russian]
  21. 21. Kirchey I. I. Cramer’s rule for quaternionic systems of linear equations.Fundamentalnaya i prikladnaya matematika, 13(4), 2007, pp.67-94. [in Russian]
  22. 22. Muminov K. K., Juraboyev S. S. Equivalence of paths with respect to the action of the group of real representations of quaternion numbers.Scientific bulletin of Namangan state University, 9, 2021, pp. 14-21. [in Uzbek]
  23. 23. Juraboyev S. S. Differential invariants with respect to the action of a group of real representation of the symplectic group.Sarymsakov Readings: Abstracts of reports of the republican scientific conference with
  24. the participation of foreign scientists. Tashkent. "Universitet". 2021. pp. 297-299. [in Uzbek]
Loading...
0

Views

0

Reads

0

Comments

0

Reviews

0

Liked

0

Shared

0

Bibliography

0

Citations

Like and share on

Cite this publication

Copy text below and use in your article